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Abstract  Early design phase of an aircraft requires 
reducing a flow noise in an air-distribution system. This 
necessitates predicting an aeroacoustic behaviour of its 
components, which can either be done by employing 
extensive numerical simulations or by using experimental 
data. This paper deals with the latter and a systematic and 
an efficient method of utilizing the experimental data for 
an estimation of empirical models is presented. A single-
hole orifice has been taken as a representative example, 
for a component of an air-distribution system, to 
demonstrate that same approach can be used to model 
other components. The presented approach uses Neuro-
Fuzzy based Local Models, which have been estimated at 
different geometries and flow conditions, and a network 
of these Local Neuro-Fuzzy Models, known as a Local 
Model Network, has been used to cover the complete set 
of conditions. Dimensional analysis of the problem, 
presented here, reveals that the aeroacoustic spectrum 
depends on a dimensionless number that is defined by the 
sound power, its frequency, the geometry of a component 
and the density of the fluid. Two empirical models have 
been developed by using this approach. The inputs to the 
models are the geometric parameters of the orifice and the 
flow conditions. Both models have different accuracies 
and complexities, where the first model can predict the 
newly found dimensionless number up to Helmholtz 
number of 5.83 while the second model consists of only 
one local model and the prediction horizon reduced to 
3.64 . 
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Abbreviations  
 
 Artificial Neural Network    ܰܰܣ
 Direct Numerical Simulation   ܵܰܦ
    International Air Transportation    ܣܶܣܫ
    Association 
 Large Eddy Simulation   ܵܧܮ
 Local Model Network   ܰܯܮ
  Local Linear Model Tree ܱܶܯܫܮܱܮ
  Power coefficient based dimensionless   ܰܦܥܲ
    number 
 Reynolds Average Navier-Strokes   ܵܰܣܴ

 Radial Basis Function    ܨܤܴ
ܹܴܲ   Worst Performing Regime 
 

1 Introduction 
 
Due to comfort reasons, a flow noise in an air-distribution 
system has become a great concern for an aircraft system 
designer. Presently, IATA facts and figures for public 
health preparedness state that for a safe cabin 
environment, almost 15 to 20 cubic feet of a total air flow 
supply per minute and per person is required in an 
economy class [1]. The flow produces an aerodynamically 
generated sound which can be termed as noise, being 
unwanted and not comfortable. In this regard, the 
passenger’s demands, for the reduced flow noise, are 
required to be accounted for in an aircraft cabin design. 
So far, the noise reduction has been dealt with by using 
passive techniques (insulation) but a more promising 
strategy is to modify the structure and the geometry of the 
system [2, 3]. However, the modifications involve a 
design optimization that requires iterative evaluations of 
an aeroacoustic prediction in different parts of the air-
distribution system, which is a rather challenging task. 
 
Accurate aeroacoustic behaviour of a complex flow is 
very difficult to model and to predict [4] since it is 
generally infeasible to comprehensively and accurately 
estimate the effects of different dynamic processes 
playing their role in overall aeroacoustic behaviour [2]. 
The flow noise of a complex flow involves a non-linear 
interaction of velocity fluctuations, entropy fluctuations, 
viscous stresses, and vorticity of the flow passing through 
the different geometries of the duct system. In addition, 
the presence of solid boundaries enhances the conversion 
from flow energy to acoustic energy [2]. So far, different 
computational methods, e.g. DNS, LES, RANS method, 
etc., have been used in the process of the aeroacoustic 
prediction. However, the prediction is a challenge not 
only due to the time and the hardware resource involved 
[2, 5] but also due to the insufficient level of a theoretical 
comprehension about the aeroacoustic phenomena [2, 3]. 
In particular, Ferdocnonki [3] has discussed in detail 
about the fundamental flaws in the basic aeroacoustic 
theories and asserts that it is very difficult to select an 
absolutely flawless method. 
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Hence, the aeroacoustic prediction of an air-distribution 
system poses a difficult problem for a cabin system 
designer since it requires undertaking the aeroacoustic 
evaluation for each geometric modification before 
finalizing the cabin system specification. In addition, the 
time and the resource consuming requirements of the 
computational tools and the insufficiency of knowledge 
limits the system design process up to a trial and error [2, 
6] approach.   
 
In this regard, this paper suggests an alternative to build 
an empirical model that performs the required task at a 
design and optimization level. The fundamental idea is to 
develop nonlinear empirical models for different 
components of an air-distribution system and to use them 
for the design optimization. The models of individual 
components can be modularly combined, each as a 
simulation block, to simulate an entire duct system. So, 
the empirical model of an individual component, e.g. 
model for single-hole orifice, becomes one of a block 
inside a complete simulation model for a whole duct 
system. A representative example, namely a single-hole 
orifice, is considered in order to demonstrate the 
empirical modelling of a single block, and it can be 
inferred that the same approach can be applied for other 
components. 
 
An empirical model results after investigating influences 
of different independent factors on quantities through 
pure experimental data. The independent and dependent 
quantities are also referred as inputs	ࣂ and outputs	࢟ of an 
empirical model. The empirical modelling is done in two 
steps: Firstly, a model structure is finalized that defines a 
relation between the inputs and the outputs, e.g. the model 
structure for the single-hole orifice relates that how 
different flow and geometric conditions relate to an 
acoustic spectrum. Secondly and finally, the model 
parameters are identified by using parameter optimization 
methods [10].  
 
As far as empirical modelling is concerned, recent years 
have seen numerous developments in nonlinear empirical 
modelling among which the artificial neural networks and 
fuzzy systems are the prominent ones [7–14]. A further 
extension is to use a hybrid approach, where artificial 
neural networks and fuzzy systems are synergically 
combined to form the so called Neuro-Fuzzy based Local 
Model Network [7]. The base is an approach which is 
referred as a “divide-and-conquer strategy” or an 
“operating regime approach” [10, 11]. The approach is 
implemented by decomposing a complex problem 
(prediction of a flow noise in an orifice) into a number of 
sub problems (operating regime) by partitioning an input 
space or operating points. This leads to a network of sub 
models or local model(s) that is known as a Local Model 
Network. Each model is valid in the corresponding 
operating regime, which is defined by radial basis 
function based validity functions. The rationale behind is 
that the behaviour of a sub model is simpler than the 

global behaviour of a complex problem, e.g. complex 
problem of flow noise prediction in a single-hole orifice. 
In particular, a sub model can easily be identified and 
solved independently by using the established techniques 
in a linear system theory [10, 11].  
 
This paper presents empirical modelling  for a single-hole 
orifice, which defines that how a Helmholtz number, a 
diameter ratio, and a Reynolds number relates to a newly 
introduced power coefficient based dimensionless 
number.  In this connection, series of experiments have 
been conducted by using a specially developed 
experimental environment [6], which allows to take into 
account different flows and geometric conditions. The 
measured data have been eventually used to identify the 
models. The final models, presented here, use the 
geometric and fluid conditions as inputs and effectively 
predict the aeroacoustic behaviour of single-hole orifice 
by yielding an acoustic spectrum.  
 

2 Neuro-Fuzzy systems  
 
A Neuro-Fuzzy system is a synergic combination of RBF 
based Artificial Neural Networks and advanced fuzzy 
systems that form the basis of Local Model Networks [7-
13]. The ANNs and the fuzzy system are essential 
components that are necessary for the implementation of 
LMNs. 
 
2.1 Artificial Neural Networks  
 
An artificial neural network is inspired by a biological 
neural network [9], which is a complex interconnection of 
biological neurons, see figure 30 in appendix. A rather 
simplified mathematical equivalence of a biological 
neuron is known as an artificial neuron. An artificial 
neuron is the fundamental unit of an ANN that can model 
any complex phenomenon by using the input and output 
data, e.g. it can model aeroacoustic behaviour of a single-
hole orifice.  
 
An artificial neuron, see figure 1, constitutes of a 
summation function, i.e. performs a summation of all 
input signals, and an activation function	 ௔݂௜, e.g. unit step 
function, sigmoid function, ramp function etc., see figure 
32 in appendix.  
 
 
 
 
 
 

 
 
 
 
 
 

Fig 1 An artificial Neuron, according to [21] 
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Similar to a biological neuron, a particular ݅௧௛ neuron 
receives all the ݑ number of inputs	ሺࣂ	߳	Թ௨ሻ that are 
weighted beforehand by suitable constants	ݓ௜௝. The 
summation function adds the weighted inputs (ݓ௜௝ݑ௝) and 
a bias weight to form a scalar signal, i.e.	࢝௜

ࣂ் ൅  ௜଴. Theݓ
activation function	 ௔݂௜ processes the scalar signal to 
produce an activation signal which can be referred as a 
local output 
 

ො௜ݕ ൌ ௔݂௜ሺ෍ݓ௜௝ݑ௝

௨

௝ୀଵ

൅  ௜଴ሻ (1)ݓ

 
for the neuron of a general ANN [10], see figure 1. 
Finally, a complete model can constitute more than one 
artificial neurons, i.e.	ܯ neurons, and predicts the 
required output, e.g. predicted results of a single-hole 
orifice. 
 
A variation of an ANN is a RBF network that uses a RBF, 
e.g. Gaussian function	ߤ, as an activation function, see 
figure 2 and 31. Depending upon the deviation of the 
input values from the reference value (called as the centre 
value	ࢉ of an RBF), the activation function produces a 
scalar valued activation signal, whose value lies between 
0 and 1, i.e.	ߤ ൌ ሾ0,1ሿ. Where, the value of 1 represents 
no deviation of the input data from the centre value, and 0 
indicates that the deviation is more than the reference 
deviation, [10, 14], i.e. the deviation is more than a 
particular multiple of the spread of the data 
ݐ݊ܽݐݏ݊݋ܿ ൈ ሾmax൫ߠ௝൯ െ minሺߠ௝ሻሿ. Finally, the	݅௧௛ neuron 
of an NRBF yields the output   
 
ො௜ݕ ൌ ,ࣂ௜ሺߤ௜଴ݓ ,࢏ࢉ  ሻ (2)࢏࣌
 
by multiplying an activation signal and a bias weight, see 
figure 2. Where ࢏ࢉ	߳	Թ௨ and	࣌࢏	߳	Թ௨, also known as the 
premises parameters, are the centre values and the 
standard deviations for the RBF.  
 
 
 
 
 
 

 
 

Fig 2 A neuron of radial basis function network  
 

It can be concluded from figure 2 that the weight		ݓ௜଴ of 
the		݅௧௛ neuron only contributes significantly to an overall 
output, when particular discrete values of inputs are 
within the range of the premises parameters for the 
corresponding RBF ߤ௜. So if there are particular discrete 
values of the inputs then a corresponding RBF would 
significantly influence the predicted final output. Figure 3 
shows an example of a multi input and single output 

(MISO) system represented by a RBF network that 
constitutes ܯ Gaussian functions.  
 
 
 
 
 
 
 
 
 
Fig 3 A radial basis function network, according to [10] 

 
2.2  Fuzzy system 
 
The artificial neural networks are capable of modelling 
any given data, i.e. they are universal approximators, but 
they lack interpretability. Alternatively, fuzzy systems 
incorporate qualitative expert knowledge (priory physical 
information and subjective insight). It analyses in terms of 
variables that take on continuous values between 0 and 1. 
The fuzzy system uses the expert knowledge in the form 
of linguistic expressions or rules and linguistic outputs 
[10, 14] which are then transformed into fuzzy numbers. 
The rules, which are if – then statements, depicts that if an 
antecedent proposition then a consequent proposition 
holds, e.g. if the velocity is 3	

௠

௦௘௖
 , and if the diameter ratio 

is 0.77 then the single-hole orifice contributes less noise. 
There is a similarity between the RBF network and the 
fuzzy system in the sense that the “trueness” of the if 
statement or rule is validated through the fuzzy logic 
based membership functions	ܨܵܯ (see figure 3 and 4), 
which are functionally analogous and similar to the RBF 
based activation function, e.g. Gaussian function.  
 
 
 
 
 
 
 
 
 
 
 
 
A further extension of the fuzzy system is a Tukagi-
Sugeno fuzzy system which, unlike the classical fuzzy 
system, realizes the output rules as equations (if  Rule ݅ 
then ݕො௜ is	 ௜݂ሺ	. ሻ ), see figures 4 and 5, and finally forms 
the basis for the Neuro-Fuzzy systems [10, 14]. The 
Tukagi-Sugeno model yields the output  
 

ොݕ ൌ෍ሺݓ௜௢ ൅ ଵߠ௜ଵݓ ൅⋯൅ ௨ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥߠ௜௨ݓ
௬ො೔

௜ܨܵܯ

ெ

௜ୀଵ

 (3) 

 
by summing all the multiples of the function	ݕො௜ and 
corresponding  membership function	ܨܵܯ௜. And similar 
to the RBF network, the membership function enforces 

Fig 4 Takagi-Sugano Model for fuzzy systems 
according to [22] ൈ
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the significance of a particular function	ݕො௜, when the 
discrete value of the inputs lie within the regime of 
the	ܨܵܯ௜, see figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
3 Local Model Network 
 
The Tukagi-Sugeno model, eq(3), forms the basis of a 
Local Model Network. The		݅௧௛ neuron of a Neuro-Fuzzy 
based Local Model Network, known as ݅௧௛ Local 
Model	ܯܮ௜, forms when any function		 ௜݂ replaces the 
weight		ݓ௜଴ of a corresponding neuron inside an RBF 
network, see figures 2 and 6.  
 
 
 
 
 
 
 
 
 

Fig 6 Neuro-Fuzzy Local Model 
 
Where, a particular validity function		߶௜ defines the local 
validity of the corresponding model, i.e. the validity 
function		߶௜ restricts the validity of the local model	ܯܮ௜ in 
the region defined by	ܿ௜ and	ߪ௜. The validity function are 
chosen as a normalized axis orthogonal Gaussian 
function, such that  
 

߶௜ ൌ
ሻࣂ௜ሺߤ

∑ ሻெࣂ௝ሺߤ
௝ୀଵ

 and ෍߶௜ሺࣂሻ ൌ 1		

ெ

௜ୀଵ

 (4) 

 
holds for all of the	ݑ. Thus, the final model for the Neuro-
Fuzzy system, e.g. the model for the single-hole orifice, 
yields the output 
 

ොݕ ൌ෍ሺݓ௜௢ ൅ ଵߠ௜ଵݓ ൅⋯൅ ௨ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥߠ௜௨ݓ
௅ெ೔

߶௜

ெ

௜ୀଵ

	 (5) 

 
by combining all the	ܯ local models. The final model can 
be conceived as a network of		ܯ different local models, 
see figure 7, and called as a Local Model Network. 
Here,	ܯ different validity function restricts the validity of 
corresponding models.  As an example, a model structure 
of the Neuro-Fuzzy based Local Model Network for a 
multi input and single output system, is shown in figure 7.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 7 Neuro-Fuzzy based Local Model Network, 
according to [10] 

 
The crux of a Local Model Network technique is to 
decompose or partition, a complex problem regime into 
 different operating regimes with the help of a "divide ܯ
and conquer strategy” [11]. Each regime is independently 
modelled and its region of validity is identified by 
determining the premises parameters of the corresponding 
validity function eq(4), [7–13], see figure 8. In this 
regard, the centre value (mean) and the spread of the data 
in 	݅௧௛ partition define the premises parameters for the 
corresponding regime, i.e. they define the 	݅௧௛ validity 
function for the corresponding local model	ܯܮ௜.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8 A particular operating regime validated by a 
corresponding validity function [7] 

 

Fig 5 An example of a Tukagi-Sugeno Model, 
according to [9] 
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In this regard, an efficient and widely used decomposition 
algorithm [10] is to heuristically partition the input space 
and to develop an independent Local Model for each 
partition. Initially, the input space is coarsely partitioned, 
i.e.	݅ ൌ ܯ ൌ 1, to make one global linear model. Then the 
݅௧௛ loss function  
 

௜ܫ ൌ෍൫ݕ௝ െ ො௝൯ݕ
ଶ
߶௜ሺܿ௜, ,௜ሻߪ

ே

௝ୀଵ

 (6) 

  
is calculated and eventually minimized by systematically 
increasing the partitions until the desired results are 
obtained. In this regard, a LOLIMOT algorithm that is an 
axis orthogonal, heuristic and an incremental construction 
algorithm [10], implements the required decomposition 
scheme, see figure 9, in the following way: 
 
1. Initialize a single regime, i.e. start with a coarse model 

of a single partition (݅ ൌ ܯ ൌ 1) 
a. Fit a global linear model, e.g. global linear model 

for an orifice. 
b. Find the weights, i.e. ࢝࢏

 ௜଴, and premisesݓ	and ࢀ
parameters, i.e. ܿ௜ and	ߪ௜.  
 

2. Find the worst performing regime  
a. Find the loss functions, eq (6), for all the 

partitions, i.e.	݅ ൌ 1,…   .ܯ,
b. Find the partition, i.e.	ܹܴܲ, with the maximum 

value of loss function, i.e. 
maxሺሾܫଵ, ,ଶܫ … , ,௜ܫ … ,  .ெሿሻܫ
 

3. Partition the WPR, in all dimensions (݀݅݉ ൌ 1,…	,  .(ݑ
a. Split the	ܹܴܲ, axis orthogonally, into two, by 

separately dividing the input space in all the 
dimensions. 

b. Find the weights and construct the validity 
function for the two hyper rectangular halves. 

c. Find the loss function for all the 	ݑ alternatives. 
 

4. Select only the best partition 
a. Select the best of the ݑ possibilities. 
b. Adopt the validity functions and weights of the 

corresponding partitions. 
c. The number of partitions is increased by one, 

i.e.	ܯ → ܯ ൅ 1. 
 

5. Test for termination of algorithm 
a. If the criteria are met, i.e. maximum iteration or 

minimum acceptable error etc., then stop the 
algorithm, else go to step 2. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Fig 9  The LOLIMOT algorithm 
 

 
4  Empirical model of a single-hole  
 orifice 
 
In this paper, a single-hole orifice is selected as a 
representative example to demonstrate that same 
technique can be used to model their aeroacoustic 
behaviour. An orifice serves to restrict the flow and helps 
to regulate it. However, the sudden change in the area 
causes pressure fluctuations [4] that make it a noise 
source. Such a source adds its contribution to the existing 
flow noise of the hollow pipe.  The prediction of the 
additional noise is essentially the acoustic prediction of a 
single-hole orifice.  
 
The modelling procedure requires the input-output data, 
which is reproduced at conditions close to those inside an 
air-distribution system. This is done by producing 
different flow and geometric conditions at the input cross 
section of the single-hole orifice. In this regard, a special 
experimental environment [6], has been used to produce 
different experimental operating condition (operating 
points). The experimental environment consists of a setup 
of hardware and software components, which are essential 
for the repeatability, see figure 10. A flow is produced by 
a fan that is regulated by using a controller, throttle, by-
pass and flow measurement sensor. The regulated flow, 
still polluted with a fan noise, is passed through series of 
noise dampers to diminish the fan noise, i.e. only flow 
noise remains afterwards. The flow is straightened and 
passed through a long pipe, with a diameter	ܦ, to bring 
the flow in a steady state condition. A reference part, e.g. 
a single-hole orifice, is placed afterwards to receive the 
required flow as an input. An impedance converter, which 
is a special divergent horn, is placed afterwards at the exit 
section of the reference part to reduce the sound reflection 
back into the flow. The flow is allowed to enter a special 
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reverberating room, which is a special room and made of 
reflecting and non-parallel walls. Finally, by using the 
standard DIN ISO 3741, the sound power level of the 
source has been found out by measuring the sound 
pressure level in the room.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10 Components of experimental setup 
 

4.1 A single-hole orifice and variable of  
  interest  
 
A single-hole orifice is a circular disc with a hole inside, 
see figure 11 and is a component of an air-distribution 
system. An important geometric variable of interest is the 
internal diameter	݀	of an orifice. A variation in the 
diameter influences the flow fluctuations and essentially 
affects the sound power. The outer diameter of the orifice 
matches the outer diameter of the pipe in which the orifice 
has been placed.  
 
 
  

 
 

 
 
 
 
 
 
 

Fig 11 A single-hole orifice 
 

The flow velocity		ݒ at the orifice and the orifice 
diameter	݀ decisively affect the sound power and can also 
be controlled by the experimental environment, i.e. they 
can be precisely changed to produce different flows and 
geometric conditions. In addition, the density ߩ and the 
viscosity ߤ	 of the fluid also play an important role in an 
overall fluid behaviour and hence should be included for 
investigating the aeroacoustics inside the duct system. 
Finally, the frequency ݂ must also be incorporated as an 

input for the model because the final objective is to 
predict the spectrum of the sound power	ܲ, such that an 
intermediate model can be defined as 
 
ܲ ൌ ݂ሺߥ, ݀, ,ߩ ,ߤ ݂ሻ. (7) 
 
The current paper uses the matrix method [16] for the 
dimensional analysis [4, 15, 16] of the variables. After 
some initial re-arrangements the non dimensional 
quantities have been deduced, which are shown in the 
table 1. 
 

Table 1: Non-dimensional quantities 
Variables of interest Formula 

Reynolds number   ܴ௘ 			ൌ
ఘௗఔ

ఓ
  

Diameter ratio   ߚ					 ൌ
ௗ

஽
  

Helmholtz Number    ݇ܦ		 ൌ
௙஽

஼
  

Power coefficient based number   ܲܰܦܥ ൌ
௉

ఘௗఱ௙య
  

 

4.2 Power coefficient based dimensionless  
  number 
 
The current paper introduces a new power coefficient 
based dimensionless acoustic quantity that is referred, 
here, as a power coefficient based dimensionless 
number	ܲܰܦܥ, see table 1. Unlike conventional acoustic 
quantity, i.e. sound power level, the number has an 
advantage that it eases the empirical modelling process. 
Since the sound power is used in a logarithmic form, the 
finalized output variable is suggested as 
 

ܰܦܥܲ ൌ 10 logଵ଴ ൬
ܲ

ହ݂ଷ݀ߩ
൰ (8) 

 
or by 
 

ܰܦܥܲ ൌ 10 logଵ଴ ൬
ܲ

௢ܲ
൰ ൅ 10 logଵ଴ ൬

௢ܲ

ହ݂ଷ݀ߩ
൰ (9) 

 
where the first term on the right hand side is the standard 
sound power level in ݀ܤ	 and ௢ܲ is the reference sound 
power level, i.e. 10ିଵଶ Watts. So a non dimensional 
model for power coefficient based dimensionless number  
 

ܰܦܥܲ ൌ ௪ܮ ൅ 10 logଵ଴ ൬
௢ܲ

ହ݂ଷ݀ߩ
൰ ൌ ݂ሺܴ௘	, ,	ߚ  ሻ, (10)ܦ݇

 
should be found out. Finally the sound power level can be 
found by using the following 
 

௪ܮ ൌ ܰܦܥܲ െ 10 logଵ଴ ൬
௢ܲ

ହ݂ଷ݀ߩ
൰. (11) 

 
 
 

100	݉݉ 
݀ 

1. Fan  
 

2. Throttle and by-pass  
 

3. Flow measurement 
 

4. Noise damper 
 

5. Flow straightener  
 

6. Long pipe for steady flow  
 

7. Start of the reference part (orifice) 
 

8. Flow measurement device 
 

9. An impedance convertor in a 
reverberating room 
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4.3 Operating points and experiments 
 
Series of experiments have been conducted by using both 
factorial and random based experimental [17, 18] design 
to ensure the reproducibility and repeatability of the 
experimental data. In order to apply the LOLIMOT 
algorithm, all the input combinations are concatenated to 
form a matrix of operating points (input matrix), which 
serve as one of the input for the LOLIMOT algorithm, see 
figure 12. 
  
As a general case there are ݏ different operating points 
which are arranged in the form of a 
matrix	ݏݐ݊݅݋ܲ݌݋	߳	Թ௦ൈ௨, where each ܾ௧௛ row represents a 
 is the number of ݑ) dimensional operating point ݑ
columns	ࣂ	߳	Թ௨). The operating point represents a unique 
combination of available discrete values for all the ݑ 
variables of interest (input parameters). Where, each 	ݍ௧௛ 
column of the		ܾ௧௛ operating point  
 
ݐ݊݅݋ܲ݌ܱ݄ݐܾ ൌ ሾߠଵሺ௣భሻ, ଶሺ௣మሻߠ ,௤ሺ௣೜ሻߠ… … ௨ሺ௣ೠሻߠ ሿ (12) 
 

represents the		൫݌௤൯
௧௛

 value		ߠ௤ሺ௣೜ሻ of the corresponding 

input. Here, as an example, 	ߠ௤൫௣೜൯ ൌ  ଷሺଵ଴ሻ denotesߠ

the	10௧௛ discrete value (݌௤ ൌ 10) of the		3௥ௗ input 
௤ߠ) ൌ  ଷ). Finally, in the case of a single-hole orifice theߠ
ܾ௧௛ operating point becomes 
 
ݐܱ݊݅ܲ݌ܱ݄ݐܾ ൌ ,ሺ௣భሻߚൣ ܴ݁ሺ௣మሻ ,  ሺ௣యሻ൧. (13)ܦ݇
 
In addition, a detailed data exploration has revealed the 
underlying structure for the relation between the power 
coefficient based dimensionless number and the 
Helmholtz number. It is clear from figure 18 – 20 that the 
power law relation 
 
ܰܦܥܲ ൌ∝ ሺ݇ܦሻ௡ (14) 
 
holds for the all the measured data. So, an operating point 
matrix of the following form 
 
ݓ݋ܴ݄ݐܤݓ݁݊ ൌ ሾߚሺ௣భሻ, ܴ݁ሺ௣మሻ, ሺ௣యሻܦ݇

௡ ሿ (15) 
 
can replace eq (13) for further analysis  and  eq (10) can 
be finally modified to 
 

ܰܦܥܲ ൌ ௪ܮ ൅ 10 logଵ଴ ൬
௢ܲ

ହ݂ଷ݀ߩ
൰ ൌ ݂ሺܴ௘	, ,	ߚ  ௡ሻ, (16)ܦ݇

 
where, further data exploration revealed that the overall 
best result could be achieved when  
 
݊ ൌ 0.15	. (17) 
 
In these experiments five different diameter ratios  
 
ହ	Թ	߳	ߚ ൌ ሾ0.38, 0.49, 0.56, 0.68, 0.77ሿ், 

have been taken and 4 different Reynolds numbers ,for 
each diameter ratio, 
	
ܴ௘	߳	Թ	ସ ൌ ሾ500		676		852		1030ሿ் ൈ 10ଶ, 
 
have been selected. In addition, 19 discrete frequency 
bands for the Helmholtz number  
 
Թଵଽ corresponding to ൌ	߳	ܦ݇ ሾ315	ݖܪ,… ,  ,Թଵଽ	߳	ሿݖܪ݇	20
 
have been considered for the modelling and hence for the 
experiments. This lead to the final input matrix, made up 
of operating points, becomes 
 

 .ଷ	ൈ	ୀଷ଼଴	௨	ൈ	ଵଽሻ	ൈ	ସ	Թሺହൈ	߳	ݏݐ݊݅݋ܲ݌݋
 

Finally, for each of the operating points, the power 
coefficient based dimensionless number has been 
calculated to obtain the corresponding data output 
vector		ݕ	߳	Թଷ଼଴, see eq (16).  
 

4.4 Local Model Network of the single-hole 
orifice 

 
The implemented LOLIMOT algorithm uses the input 
output data, the stopping criteria of the upper limit of a 
maximum bias error and a maximum number of iteration 
as input arguments for the systematic and heuristic 
building of the Neuro-Fuzzy based Local Model Network, 
see figure 12. The outputs of the algorithm are the 
resulting Local Model Network and corresponding 
validity functions. This Local Model Network contains ܯ 
local models, which are depicted by the  ܯ number of 
neurons. Where each	݅௧௛ local model has a regime 
characterised by the corresponding validity function	߶௜, 
see eq (4). 
 
 
 
 
 
 
 
 

 
Fig 12 Developing the LMs 

 
This LMN is the final model for the single-hole orifice 
which can be used to successfully predict the outputs	ݕො at 
any new evaluating points, see figure 13. 
 
 
 
 
 
 

Fig 13 Predicting the outputs 
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New evaluation 

Deutscher Luft- und Raumfahrtkongress 2012

7



 
 

It is important to note that every empirical modelling 
process faces a bias-variance dilemma [10, 19]. During 
the implementation of the LOLIMOT algorithm, less 
number of iteration results in the lower number of 
parameters that correspond to a higher value of the bias 
error but a smaller variance error. Similarly the higher the 
number of iterations the lower will be the bias error but 
the higher will be the variance error. Since, a low variance 
value indicates a higher extrapolation capability [10, 19], 
so, it is important to select a maximum allowed bias error, 
as this will automatically ensure a minimum possible 
variance error. 
 
The maximum acceptable bias error can be selected by 
incorporating the maximum allowed deviation in a 
particular sound power level at any frequency. The 
maximum allowed deviation corresponds to the maximum 
variation in the sound power level before any noticeable 
change in hearing. Psycho-acoustically, the noticeable 
change in the sound perception is felt with an at-least 3 
dB change in the sound pressure level [20]. So by 
allowing the uncertainty of 3 dB for each element in the 
predicted output vector (ݕො	߳	Թଷ଼଴), a suitable initial guess 
for the maximum allowable weighted sum of the square 
of the errors, see eq(6), has been obtained as 3420, i.e. 
ሺ3ሻଶ ൈ 380. So by defining the stopping criteria of the 
maximum weighted squared error as 3420 and initializing 
the maximum number of iterations as an arbitrary big 
number, one may run the LOLIMOT algorithm to result 
in the minimum reasonable number of Local Models 
required to build an acceptably accurate model.     
 
In this regard, the implemented LOLIMOT algorithm has 
been run and it was found that after two iterations the 
criteria of acceptable bias error has been met. The 
resulting model has been further simplified by using a 
certain assumption, discussed in section 5. The new 
assumption helped in achieving the acceptable result after 
running the algorithm for one iteration only.  
 

5 Results  
 
Two series of experiments have been conducted at 
different times. Both of the experiments were conducted 
with different operators, different types sound measuring 
sensors (a free field microphone with diffuse field 
correction, and a diffuse field microphone), two different 
impedance convertors, etc. Mean of the overall 
experimental data has been calculated and it has been 
found out that most of the experimental data are not 
deviating, from the mean of the data, by more than a 
psychological threshold of 3 dB (see figure 14), i.e. a 
human mind cannot distinguish a noticeable change if the 
deviation is less than 3 dB [20].  In addition the histogram 
of the difference, see figure 15, suggest that the difference 
is normally distributed which indicates that the difference 
can be taken as random and there exist no bias error. The 
standard deviation of the error has been found to be 
ߪ ൌ 1.08. This indicates a z-score of 2.76 for the 

threshold of 3 dB and it can be confidently stated, by 
using the standard z-score table, that there exists a 
probability of 99.70 % that the experimental data will not 
deviate more than is 3 dB. So the mean of the data 
reasonably represents the reproducibility of the 
experiments and can be effectively and confidently be 
considered for the modelling purpose. Although there are 
in total five readings that are above 3 dB, but they 
represent a probability of 0.3 % for any such future 
deviations. In addition, the maximum value that has 
reached is 3.5 dB, which is psychologically near to the 3 
dB and hence can comfortably be ignored.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 14 Absolute error of the data: As there are two sets of 
experimental data so a difference of one data set from the 
mean is a mirror image of another, i.e. ݔଵ െ

௫భା௫మ
ଶ

 = 

െቂݔଶ െ ቀ
௫భା௫మ
ଶ

ቁቃ. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 15 Histogram of the error 

 

5.1  An orifice model: based on two local 
   models 
 
The Neuro-Fuzzy model structure, see eq(5) and figure 7, 
has been heuristically finalized by implementing the 
LOLIMOT algorithm, see figure 9. In this regard, the 
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observed input, i.e.	ݏݐ݊݅݋ܲ݌݋	߳	Թଷ଼଴	ൈଷ, and output data, 
i.e.	ݕ	߳	Թଷ଼଴, were deployed (figure 12 and 13) to result 
the predicted output, i.e. 	ݕො ൌ  Թଷ଼଴.  Finally, the	߳	ܰܦܥܲ
Neuro-Fuzzy based local model network for the predicted 
output  
 
ܰܦܥܲ ൌ ሺݓଵଵߚ ൅ ଵଶܴ௘ݓ ൅ ଴.ଵହܦଵଷ݇ݓ ൅  ଵ଴ሻ߶ଵݓ
													൅	ሺݓଶଵߚ ൅ ଶଶܴ௘ݓ ൅ ଴.ଵହܦଶଷ݇ݓ ൅  ଶ଴ሻ߶ଶݓ

(18) 

 
is obtained. It constitutes two Local Models, where the 
estimated parameters, i.e. ࢝૚,࢝૛, ߶ଵ and ߶ଶ are shown in 
table 2. 

 
Table 2: Parameters of the LMN with two Local Models 

Parameters of the LMN 

Neuron 1 

࢝૚ 

	 ଵଵݓ ൌ െ51.468
	 ଵଶݓ ൌ 3.676 ൈ 10ିସ

	 ଵଷݓ ൌ െ155.719 
	 ଵ଴ݓ ൌ 28.131

߶ଵ 

 ૚ࢉ
ܿଵଵ ൌ 0.575
ܿଵଶ ൌ 7.65 ൈ 10ସ

ܿଵଷ ൌ 0.849  

࣌૚ 
ଵଵߪ ൌ 0.129  
ଵଶߪ ൌ 1.749݁ ൈ 10ସ

ଵଷߪ ൌ 0.0996

Neuron 2 

࢝૛ 

	 ଶଵݓ ൌ െ62.397
	 ଶଶݓ ൌ 3.658 ൈ 10ିସ 
	 ଶଷݓ ൌ െ97.764
	 ଶ଴ݓ ൌ െ24.112

߶ଶ 

 ૛ࢉ
ܿଶଵ ൌ ܿଵଵ  
ܿଶଶ ൌ 	 ܿଵଶ  
ܿଶଷ ൌ 1.152  

࣌૛ 
ଶଵߪ ൌ   ଵଵߪ
ଶଶߪ ൌ   ଵଶߪ
ଶଷߪ ൌ   ଵଷߪ

 
5.1.1 Residual analyses 
 
For residual analyses, Perrin [19] suggests that two 
objective functions  
 

1ሺ%ሻܴܥ ൌ 100 ൥1 െ
∑ ሺ	ݕ௜ െ ො௜ሻଶݕ
௡
௜ୀଵ	

∑ ൫ݕ௜ െ ොത൯ݕ
ଶ௡

௜ୀଵ	

൩ (19) 

 
and  
 

2ሺ%ሻܴܥ ൌ 100 ቎1 െ
∑ ൫ඥݕ௜ െ ඥݕො௜൯

ଶ௡
௜ୀଵ	

∑ ൫ඥݕ௜ െ ඥݕො൯
ଶ௡

௜ୀଵ	

቏ (20) 

 
should be used for the assessment of the calibration and 
the training of the model, where	ݕ ,ݕො and  ݕොത are the 
measured, simulated and mean measured outputs, 
respectively. For a final assessment of a model and for the 
validation, there is not a single criterion as single criterion 
may be incomplete [14]. Perrins [19] recommends the 
criteria  

3ሺ%ሻܴܥ ൌ 100 ቈ1 െ
∑ ௜ݕ| െ ො|௡ݕ
௜ୀଵ 	
∑ ௜ݕ| െ ොത|௡ݕ
௜ୀଵ

቉ (21) 

 
and  
 

4ሺ%ሻܴܥ ൌ 100 ቎1 െ ቮඨ
∑ ො௜௡ݕ
௜ୀଵ

∑ ௜௡ݕ
௜ୀଵ

െ ඨ
∑ ௜௡ݕ
௜ୀଵ

∑ ො௜ଶݕ
௜ୀଵ

ቮ቏ (22) 

 
for the complete assessment of the model in terms of the 
forecast  and the validation, which are based on a mean 
absolute model error and a mean cumulative error, 
respectively [19].   
 
The results of the residual analyses for the orifice model 
in eq (18), are shown in table 3. The values depict that up 
to which percentage the model predicts and validates the 
measurements.  

Table 3: Residual analysis for the orifice model 
constituting two LMs 

Model type Analysis type Value % 

 ܰܦܥܲ

 99.155 1ܴܥ

 99.281 2ܴܥ

 92.202 3ܴܥ

 99.999 4ܴܥ

 ௪ܮ

 95.044 1ܴܥ

 93.451 2ܴܥ

 80.368 3ܴܥ

 99.999 4ܴܥ

 
Table 3 clearly shows that the empirical model is well 
calibrated, trained and validated. In addition, the model 
can also be used with a sufficient reliability for the 
forecast, at least for the same dynamic and geometric 
similarities.  

The plots for the predicted outputs	ෝ࢟, see eq(18), obtained 
from the newly found LMN that constitutes two Local 
Models are shown in figures 18 – 20. Each figure 
represents the simulated and experimental results for a 
particular orifice, whereas each sub-figure shows the 
result for a particular fluid condition in that orifice. Each 
sub figure shows two dotted lines and a solid line, which 
represents the upper and lower acceptable bound for the 
predicted output and the experimentally measured output, 
respectively. One can see that the predicted plot is 
acceptably inside the + 3 dB bound of the experimental 
mean for the	ࡺࡰ࡯ࡼ. The figures clearly suggest that the 
newly found LMN is acceptably predicting the measured 
results. For a comfortable viewing, some of the results, 
i.e. results for three out of the five different orifices, are 
shown. In addition, figures 21 – 23, shows the predicted 
sound power level by using eq(11). Again it is evident 
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that the model is effective for the prediction of the sound 
power level 	࢝ࡸ.  

 
5.2  2nd orifice model: based on a single  
   local model 
 
One important point to notice is that for low Reynolds 
numbers, the sound power level, see figures 21 – 23, 
corresponding to the last two Helmholtz number 
(corresponds to the frequencies of 16 kHz and 20 kHz) 
increases in a non-linear way and hence cause the 
LOLIMOT algorithm to further partition the input along 
the dimension of the Helmholtz number. A further 
simplification can be made to the model by ignoring this 
nonlinearity and limiting the analysis to the frequencies 
band below 16 kHz. This can be supported on the basis of 
the observation, see figure 21 – 23, that the sound power 
levels at the frequencies higher than 16 kHz are too low to 
significantly contributes the overall sound power levels. 
In addition, psychoacoustically, a human ear is less 
sensitive in terms of recognizing the change in power 
levels at such high frequencies, [20]. So the experimental 
data has been trimmed (last two entries in each spectrum 
has been ignored) to cope with the new assumption and 
again checked for its suitability from statistics point of 
view.  
 
Similar to the previous non-trimmed data, figure 16 
clearly indicates that the most of the newly trimmed data 
is well within the 3 dB from the mean of the data. 
Similarly the histogram of the absolute error for the new 
data, see figure 17, suggest that the difference is again 
normally distributed and so the difference is random and 
there exist no bias error. The standard deviation of the 
error has been found to be ߪ ൌ 0.958. This indicates a z-
score of 3.129 for the threshold of 3 dB and, again by 
using the z-score tables, it can be confidently stated that 
there is a probability of 99.91 % that the experimental 
data will not deviate more than 3 dB from the mean. So 
the inclusion of the new assumption does not alter the 
effectiveness of using the trimmed data and the 
confidence on the reliability of the new trimmed data has 
been ensured for the modelling purpose. Similar to the 
previous form of the data, there are in total five readings 
that are above 3 dB, but, this time, they represent even a 
lower probability of 0.09 % for any future deviation more 
than 3 dB. In addition, the maximum value that reached 
3.5 dB, which is psychologically near to the 3 dB and 
hence can once again be ignored comfortably. 
 
With this assumption the algorithm has been run again 
and resulted in even simpler model (only one local 
model), which indicates a better variance error as the 
number of parameters are less. The new form of the 
resulting model 
 
ܰܦܥܲ ൌ ߚଵଵݓ ൅ ଵଶܴ௘ݓ ൅ ଴.ଵହܦଵଷ݇ݓ ൅  ଵ଴ (23)ݓ

shows a single neuron based model and table 4 shows the 
parameters for the single Local Model based LMN. As 
there is only one Local Model, the validity function  is a 
unity, i.e. 	߶ଵ ൌ 1, and the parameter vector ࢝૚ is shown 
in table 4. 
 
Table 4: Parameters of the LMN with one Local Model 

Parameters of the LMN 

Neuron 1 ࢝૚ 

ଵଵݓ  ൌ െ55.897
ଵଶݓ  ൌ 3.807 ൈ 10ିସ

ଵଷݓ    ൌ െ141.399 
ଵ଴ݓ  ൌ 18.135

 
The corresponding residual analyses are shown in table 5. 
It is important to note that the new Local Model Network, 
based on one local model, still possess a reasonable 
forecasting capability and so it can be utilized for the case 
where the prediction horizon for Helmholtz number is up 
to reduce to 3.6. In addition, Figures 24 – 26 and figures 
27 – 29 show that an acceptable accuracy along with a 
less complexity can be achieved for the prediction of both 
the acoustic quantities, i.e. power coefficient based 
dimensionless number and sound power level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 16 Absolute error of the data for kD up to 3.6 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 17 Histogram of the error for kD up to 3.6 
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Table 5: Residual analysis for the model constituting a 
   LM when the last two frequency bands were  

   ignored for simplification 
Model type Analysis type Value % 

 ܰܦܥܲ

 98.904 1ܴܥ

 98.934 2ܴܥ

 90.244 3ܴܥ

 99.999 4ܴܥ

 ௪ܮ

 94.495 1ܴܥ

 93.785 2ܴܥ

 77.442 3ܴܥ

 99.999 4ܴܥ

 
6 Conclusions  
 
For the design of air-distribution system in future 
aircrafts, an analytical tool has been implemented for the 
systematic development of an empirical model that allows 
the prediction of aeroacoustic noise. It is an alternative to 
the current modelling approaches, since it is efficient and 
effective and based on a synergic combination of a fuzzy 
system and an artificial neural network. The resulting 
Neuro-Fuzzy based local model network combines the 
interpretability of Fuzzy systems and the quantitative 
capability of an artificial neural network.  
 

As a representative example, a component of an air-
distribution system, namely a single-hole orifice has been 
considered and modelled for its aeroacoustic prediction. A 
new power coefficient based dimensionless number has 
been introduced which makes the modelling process 
easier. Two model structures based on the Neuro-Fuzzy 
method were heuristically developed by using the 
LOLIMOT algorithm whose parameters were identified 
by using the linear least square method. The final models 
use the fluid and geometric variables and predict the 
sound spectrum as an output which is successfully 
validated by using the residual analyses. The results show 
that there is a good agreement between the experimental 
and simulated results, i.e. for both the spectrum of the 
power coefficient based number and the sound power 
level. 
 
The models effectively predict the aeroacoustic behaviour 
of an orifice. The same approach may be applied to other 
parts of an air-distribution system, e.g. branched duct, 
curved pipes, air outlet, etc. The models will then be 
connected in a modular way to simulate the complete 
aeroacoustic behaviour of an air-distribution system. 
Moreover, the same approach can be applied on other 
engineering problems where an empirical model is 
required. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 18 Predicted and measured PCDN for orifice of diameter ratio 0.49 with kD up to 5.8 
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Fig 19 Predicted and measured PCDN for orifice of diameter ratio 0.56 with kD up to 5.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 20 Predicted and measured PCDN for orifice of diameter ratio 0.77 with kD up to 5.8 
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Fig 21 Predicted and measured sound power level for orifice of diameter ratio 0.49 with kD up to 5.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 22 Predicted and measured sound power level for orifice of diameter ratio 0.56 with kD up to 5.8 
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Fig 23 Predicted and measured sound power level for orifice of diameter ratio 0.77 with kD up to 5.8 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 24 Predicted and measured PCDN for orifice of diameter ratio 0.49 with kD up to 3.6 
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Fig 25 Predicted and measured PCDN for orifice of diameter ratio 0.56 with kD up to 3.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 26 Predicted and measured PCDN for orifice of diameter ratio 0.77 with kD up to 3.6 
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Fig 27 Predicted and measured sound power level for orifice of diameter ratio 0.49 with kD up to 3.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 28 Predicted and measured sound power level for orifice of diameter ratio 0.56 with kD up to 3.6 
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Fig 29 Predicted and measured sound power level for orifice of diameter ratio 0.77 with kD up to 3.6 
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8 Appendix 
 
8.1 Biological neural network 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 30 Two interconnected biological neurons. A 
biological neuron consists of a Soma, Dendrites, an Axon 
and Synapses. All the incoming signals, generated by 

some external stimuli, enter the logical part of the neuron, 
called Soma, through Dendrites. The Soma adds all the 
input signals and logically realizes them. If the summed 
signal surpasses the threshold then the Soma converts the 
signal into an activation signal in the form of a pulse 
sequence, which propagates along an Axon, as an output 
and may enter into another neuron via Synapses. Finally, 
a complex combination of different neurons provides a 
brain an outstanding pattern recognition and concept 
making capability. 

 
8.2  A Gaussian function: A type of a   
   radial basis function 
 

 
 
 
 
 
 
 
 
 
 
 

Fig 31  Gaussian function an example of a  radial basis 
   function 
 
 

 

 
 ߠ

ܨܤܴ ൌ ௔݂ோ஻ி௜ሺߠ, ܿ௜, ௜ሻߪ

ൌ exp	 ൭
ห|ߠ െ ܿ௜|ห

ଶ

ଶߪ2
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Synapses 
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8.3  Activation Functions 
 
Different activation function, ௔݂ሺ	ሻ are shown in figure 41. 
 

 

௔݂ሺ. ሻ ൌ 	 ൜
1, ݄ ൒ 0
1, ݄ ൏ 0                                ௔݂ሺ. ሻ ൌ ݄ 

 

 

௔݂ሺ. ሻ ൌ
ଵ

ଵା௘ష೓
                                        ௔݂ሺ. ሻ ൌ

௘೓ି௘ష೓

௘೓ା௘ష೓
 

 
Fig 32 Different activation function 
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