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Abstract 
In the research agendas of the EU, the USA and many countries on the digitalization of industry and society 
(e.g. [5], [11], [14], [31]), the creation of an Internet of Things (IoT) with its digital representations of assets is 
described as one of the most important transformations for future life and work. Many of the corresponding 
activities are summarized under the term Industry 4.0 (I4.0). The paper discusses how data-driven MRO can 
benefit from I4.0 developments, in particular by applying I4.0 components, which are the combination of an 
asset and its digital complement, the Asset Administration Shell. The paper proposes a data-centric MRO 
environment through the creation of a cyber-physical system for seamless and secure communication and 
smart interoperation between all stakeholders - such as humans, machines, or tangible and intangible prod-
ucts. In a conceptual design stage, the mandatory elements are introduced, such as independently operating 
proactive AAS, the necessary hardware adapters or the descriptive submodels of AAS with regard to the re-
quirements of the MRO. The interactions between the AAS are based on their bidding capabilities, including 
the automated exchange and negotiation of tender documents, for which a structure is proposed. In an imple-
mentation scenario, the introduced concept is experimentally verified. 

1. INTRODUCTION 

In the context of the manufacturing-oriented Industry 4.0 
(I4.0) activities, several architectures, concepts, and solu-
tions have emerged that are also applicable to future data-
driven maintenance, as we discuss in [38]. A key element 
is the Asset Administration Shell (AAS) standardized 2022 
[12], which promises seamless interoperation, structured 
data management, and intelligent decision making for vari-
ous assets in cyber-physical-social systems (CPSS), as we 
present in [39]. The goal is to build a cross-domain, cross-
stakeholder and cross-technology digitized MRO value 
chain that is in line with the I4.0 vision of an open IoT mar-
ketplace (Figure 1). Here, all participants (from companies 
to individuals) exchange their service requests and offers 
with each other or maintain their lifecycle data using the 
AAS as a common communication framework. 

The AAS is described by the Plattform Industrie 4.0 as a 
digital representation of an asset and is also referred to as 
a "digital twin", but can go significantly beyond this due to 
its intended proactive behavior. It is this proactive behavior 
that enables self-determined communications and negotia-
tions between assets in scalable CPSS (from the field level 
to global networking) regarding specific requests and re-
sponses as expected capabilities/skills to meet desired de-
mands. Based on the overarching research question [38], 

RQ 1 To what extent can the standards and recom-
mendations of Industrie 4.0 Components be ap-
plied in MRO, including humans? 

the deeper focus in the present paper is on elaborating the 
question,  

RQ 2 How can the Asset Administration Shell con-
cept be used, adapted or extended to be ap-
plied in data-driven MRO in the aviation sector? 

Building on our research results presented in [38] and [39] 
and considering the latest developments of I4.0, the paper 
will describe the preliminary design and construction of I4.0 
components (synthesis of assets and their administration 

 
Figure 1: Interoperation in the CPSS, based on [4] 
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frame: The frame comprises sender and receiver infor-
mation, message type, conversation and messages IDs 
and a reference to the used protocol. The interactive ele-
ments comprise submodels or other data elements that are 
exchanged between the AAS. Following [16], [2] advances 
the concept of I4.0 component interaction as an environ-
ment of interacting state machines, with an example appli-
cation is shown in [1]. In this context, the interaction proto-
col of an iterative bidding procedure between I4.0 compo-
nents (VDE 2193-Part 2, [35]) is of great importance, as will 
be shown later. 

2.1. Software and hardware of an I4.0 Compo-
nent with type 3 (proactive) AAS 

In preparation for a standardized implementation of the as-
sets in a CPSS, one idea here is to provide a domain-inde-
pendent and easy-to-implement hardware box that builds 
an I4.0 component together with the asset. The box is in-
tended to be used as an uniform plug-in device for a wide 
variety of assets and to provide them with additional fea-
tures if they are not available by default (e.g. PLC with built-
in OPC UA server). The aim is also to improve already ex-
isting infrastructures without great effort (brownfield sce-
nario).  

First, it includes the functionality of reading, writing, pro-
cessing, and protocol-based access to the asset's data var-
iables (Figure 4). Second, these data variables and thus the 
asset are managed by encapsulating them with a Python-
based proactive AAS and its smart behavior (Figure 5). The 
latter enables the asset to make self-determined decisions 
based on its data (e.g. health condition) or in the bi-direc-
tional bidding procedures between other participants of the 
CPSS as a service requester (customer) or provider (con-
tractor; chapter 2.2.1). The box is connected to the asset 
via serial, loopback or Ethernet interfaces and to the CPSS 
via Ethernet, WLAN or LTE interfaces.  

2.1.1. Software development 

Data server: The very first step is to make the asset’s bi-
directional data stream available to the proactive AAS and 
thus to the CPSS network. To do this, a data server is cre-
ated. This is based on a data integrator in combination with 
communication adapters. First, all data variables of the as-
set required for its initializing, monitoring and control have 
to be exchanged, prepared or even processed (e.g. trans-
lation of raw data) before being transmitted to the network 
communicators and vice versa. This is done via the data 
integrator (Figure 4, top), which is programmed in Python, 
connected to the asset (serial, Ethernet) and continuously 
exchanging the raw or pre-processed data with the follow-
ing two network communication adapters (Figure 4, center): 

The first option is to use an OPC UA server2, which provides 
network accessible variables for data exchange via its own 
protocol. By configuring the OPC UA server with appropri-
ate endpoint settings such as URL and namespace, clients 
like the AAS server (see below) can connect to the data 
server. Additionally, an event handler is implemented to de-
tect changes in the data stream of the asset and trigger cor-
responding updates in the OPC UA server. This event-
driven approach ensures that the OPC UA server is contin-
uously informed about any modifications in the data, allow-
ing for real-time synchronization between the OPC UA 
                                                           
2 https://github.com/FreeOpcUa/opcua-asyncio  
  (02.08.2023) 

Server and the connected clients (e.g. AAS; Figure 4 bot-
tom). The second option is to use a REST server built with 
Flask3, which offers a REST API via endpoint definitions 
that provides a range of operations such as retrieving, add-
ing, updating or deleting data. Communication with clients 
is done using HTTP methods and responses are returned 
in JSON format. Before the proactive AAS can manage the 
asset, the data flow between the two must be established 
in a server-client combination. Here we use OPC UA as a 
common exchange format. 

AAS server: In [38], chapter 3.2, we describe a concept of 
how to design a proactive AAS and thus a necessary sys-
tem architecture could look like. In the present work, the 
concept is a merged result of different proposals on this 
topic, in particular by [2], [23] and [24]. Here, the findings 
were applied to design a Python-based solution in terms of 
the previously referenced architecture. 

In general, and as introduced in e.g. [2], [32] and [36], a 
component manager is responsible for the overall orches-
tration of the datasets and algorithms that control data pro-
cessing and dynamic behavior of the AAS. In the Python-
based AAS, this is realized by a centralized orchestrating 
server class as the base module on which a whole package 
of modules is built (Figure 5). The modules cover several 
tasks, the most important of which are initializing the AASX 
file, maintaining the AASX data structure in memory, oper-
ating an internal data bus, handling incoming and outgoing 
I4.0 messages via events and forwarding them through the 
system, or providing various communication adapters 
(REST, OPC UA, MQTT, HTTP). In addition, another mod-
ule implements a set of state machines that support the 
AAS to behave independently, with a focus on interaction 
between multiple AASs in the CPSS. The module resem-
bles the interaction manager as recommended for 

3 https://flask.palletsprojects.com  
  (02.08.2023) 

 
Figure 4: Scheme of data server, managing bi-directional 
data flows between tangible or intangible assets and 
standardized interfaces and communication protocols 
(HTTP, OPC UA) 
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proactive AAS architectures in [2]. “The interaction man-
ager uses state machines to implement various semantic 
interaction protocols for calling up the necessary decision 
algorithms” [17]. Note that state machines can interact 
within an I4.0 component in the same way as with external 
interactions, using interaction protocols. 

 
 
AASConfigureParser() 
It extracts and parses the AASX file. 

StateMachine() 
It initializes and maintains all available state machines 
and their encapsulated capabilities and skills. 

DataAdaptor() 
It creates and maintains the data structures required for 
storing the AASX package data 

DataManager() 
It synchronizes the read and write methods of the inter-
nal data structures. The Python AAS server maintains in-
ternal data structures for representing AASX package 
data. The Data Manager acts as an interface layer for 
this internal data structures. 

MsgHandler() 
It manages the communication between all the modules 
and is the internal message bus of the server. It main-
tains two queues (inbound/outbound) and event listeners 
are attached to both of them (Event: receiving, sending 
message). The EndPoint Handlers need to “getIbMes-
sage” method to push an inbound I4.0 messages into the 
message bus. The eventHandler “sendOutBoundMes-
sage” invokes the dispatch method from the appropriate 
endpointhandler to send the outbound I4.0 messages. 

AASEndPoints() 
MQTT and HTTP endpoints of the Server. 

AssetAccessPoints() 
Configures the Asset Access Adaptors 

Figure 5: Scheme of the Python-based proactive AAS, its 
interacting modules, AASX package file and connected to 
the associated asset via asset data server 

Generally speaking, state machines are used in the Python 
AAS to functionalize or, if already present, encapsulate and 
top manage the capabilities and skills of the asset, or even 
just its digital representation (see chapter 2.2.1). A state 
machine consists of an initial state, a set of states and a set 
of transitions that enable movement from one state to an-
other state. For each state machine, a Python script is im-
plemented. This script is created based on a JSON repre-
sentation (Figure 6 below): The JSON object has two parts, 
the MetaData and the actual state machine information con-
taining a set of transitions. Each transition has a start state, 
target state, InputDocument (in case the start state is ex-
pecting a message of a specific type for further processing) 
and an OutputDocument (In case the start state would like 
to send a message to another state machine). 

The created Python script consists of a set of classes, one 
for each state, and a base class that is responsible for start-
ing the state machine and iterating over the states using 
transitions. Each class related to the state has two main 
functions run() and next(). The run() method is setup to 
start the execution of the current state and the next() 
method sets the state to its next states. A separate function 
called logic() is specially added to each of the class, a de-
veloper is expected to add all the extra logic pertaining to 
the state in this method. In the logic() function, for example, 
parameters of the asset are monitored and the next state is 
initiated or a (remote) sub-process is invoked when a 
threshold is reached. The transition from the current to the 
next state could be one out of many states, for this a Bool-
ean variable is associated to each such state. Which next 
state is activated depends on the returned result of the cur-
rent state, e.g. “rejected” = true or false. If inbound or out-
bound messages are required, which is defined based on 
the information provided in the json representation, they are 
pushed to or received from the respective message queues 
by the message handler. 

proactive AAS 
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→ DataManager() 
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→ Adapters() … 

→ … 

→ Handlers() … 

→ StateMachine() 
"MetaData": { 

"Name": "ServiceRequesterDrone", 
"enabled": true, 
"semanticProtocol": "VDI2193-2 ", 
"Author": "Name", 
"Date": "2022-MM-DD", 
“SkillService”: “MRO Request}   

  "StateMachine": { 
 "InitialState": "WaitforOrder",     
 "Transitions": [ 

       {"StartState": "WaitforOrder", 
       "TargetState": "SendRequest", 
       "InputDocument": "Order", 
       "OutputDocument": "CallForProposal"}, 
       { "StartState": "SendRequest",… }]} 

Figure 6: JSON representation of the state machine 
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2.2. Submodels 

The metamodel of the Asset Administration Shell [18] con-
sists of individual Submodels (SM) and their set of Submod-
elElements, including property instances. This composition 
contains all the asset information to represent digitally its 
properties, capabilities, skills or general behavior. It should 
be noted that an asset can be broken down into other as-
sets and the AAS associated with them. To achieve the 
overall AAS objective of standardized interoperability, sub-
model templates provide common specifications for guid-
ance. These templates are officially elaborated, reviewed 
and published by the IDTA. The AAS distinguishes between 
type and instance in terms of an original type specification, 
e.g. from the manufacturer, and the adapted application as 
an instance of the specification in an operational environ-
ment – considering asset’s lifecycle. All elements can be 
uniquely identified. They can have specific access controls 
and be maintained throughout their lifecycle. Even aspects 
such as procedures for handling over assets to another 
owner are defined, e.g. in the Handover Documentation 
[20]. In the presented paper, we will focus on submodels 
covering capabilities and skills in proactive AAS, including 
the exchange of digital certificates e.g. the EASA FORM 1. 

2.2.1. Bidding State Machine Submodel 

We build on the I4.0 scenario of independent, vertically and 
horizontally interacting partners in a CPSS. This also in-
cludes less complex interactions in scenarios where only 
information is exchanged. What they all have in common is 
the use of the I4.0 language. To enable the proactive AAS 
to autonomously interoperate with other proactive AAS, a 
state machine based on the scheme introduced in chapter 
2.1.1 was implemented that can initiate, participate, control 
and direct bidding interactions. It is about finding the appro-
priate service provider to a service request in terms of tech-
nical requirements, costs or suggested alternatives. Re-
quests can range from detailed to general (e.g. "drilling" or 
"MRO service"). The requester initiates the bidding process 
by sending a call for proposal (CfP) to the CPSS. The re-
ceiving partners internally check their capabilities and skills 
to evaluate if they can fulfill the request and return a pro-
posal for further negotiations until the final decision is made. 
Thus, decision making is crucial at certain points and re-
quires appropriate techniques of Multi-Criteria Decision 
Analysis (MCDA), such as TOPSIS, that are applicable in 
IT algorithms. As described later, the negotiation skill of the 
bidding capability could be thought of as one such central 
skill, which precedes all other skills. However, a pre-defined 
granularity of the bidding process allows flexibility in 
whether a skill can be requested directly or needs to be ne-
gotiated. A submodel for the implementation of a bidding 
state machine in proactive AAS is proposed below. It is 
based on the IDTA's published "Control Component" tem-
plate [21]. 

The VDI/VDE 2193:2020 part 2 [35] formalizes the bidding 
procedure between I4.0 components (Figure 9 a): Accord-
ing to this, the flow of interaction is not linear, but involves 
feedback loops of negotiation, clarification, withdrawal, re-
vision or rejection. Based on this framework and consider-
ing decision nodes, the steps of the interaction protocol can 
be specified as follows: 

1. Call for Proposal: The Service Requester (SR) sends 
a call for proposal (CfP) to potential Service Providers 
(SP). The CfP document outlines the desired services, 
requirements, and other relevant information. 

2. Proposal Generation: The SP receives the CfP and 
assesses whether they understand the requirements 
and if they can deliver the services based on their ca-
pabilities, skills and resources. Based on this evalua-
tion, the SP creates a proposal that includes the ser-
vices, costs, timeframes, and other contract relevant 
details. 

3. Evaluation with MCDA Techniques: The SR re-
ceives multiple proposals from potential Service Pro-
viders. Using MCDA techniques, the SR evaluates the 
proposals based on predefined criteria such as cost, 
quality, provider experience, delivery time, and other 
factors. 

4. Contract Negotiation: The SR selects the best pro-
posal based on the evaluation using MCDA tech-
niques. The SP with the most favorable proposal re-
ceives a contract that is sent to them. The SP can ac-
cept the contract, reject it, or propose revisions to align 
with their specific needs. 

5. Contract Finalization: If the SP accepts the contract 
or agrees to the revisions, the contract is finalized be-
tween the SR and the SP. 

6. Service Execution: The SP commences the execu-
tion of the contract as per the agreed-upon terms. 
They deliver the services within the specified 
timeframe and in adherence to quality standards. 

7. Result Verification: Upon completion of the service 
execution, the SR verifies the results (e.g. quality 
check). They may accept the delivery, reject it, or re-
quest rework if the results do not meet the expecta-
tions. 

In order to operationalize these steps in a bidding state ma-
chine of the Python AAS, a set of classes is created as in-
troduced in section 2.1.1, one for each interaction step. This 
is shown for the service provider (contractor) in Figure 9 (b). 
Whit respect to the service requester state machine, some 
states are added, e.g. the WaitForNewOrder or CallForPro-
posal, others are removed, e.g. the ServiceProvision. 

The state machines of the SR and SP have in common that 
they exchange their negotiation relevant documents. These 
documents are part of or have their own referenced sub-
model, whose JSON serialization is part of the I4.0 lan-
guage pattern (I4.0 message elements). A state for capa-
bility check evaluates these documents e.g. for readability 
and completeness. A state for feasibility check assesses 
whether the skills available are suitable to execute the re-
quest. A state for schedule check evaluates the date, time, 
duration and location of the requested provision. With this 
information and process-specific requirements, the ex-
pected cost indicators are calculated, the proposal is pre-
pared and returned to the SR in another states (Figure 9 (b) 
middle). The SR evaluates the returned documents in the 
same way, but from a different perspective. Note that there 
may be more than one proposal returned if more than one 
SP responds. If there is no exact match between the re-
quired and proposed features, both the SR and the SP can 
decide whether to reject, revise or accept the offer after 
considering their relevant criteria by using IT-based MCDM 
techniques. MCDM ranks the proposals received on the 
basis of the performance indicators provided, considering 
the service requester’s specific weighting of these indica-
tors. For example, if the weight of the price is lower than the 
delivery time, proposals with even higher prices but faster 
delivery could be selected. MCDM techniques such as 
TOPSIS can process a much higher number of criteria and  
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ultimately provide a ranked list of alternative proposals on 
the basis of which a decision is made. If not accepted in the 
first round of bidding, either a revision is iteratively worked 
out between SR and SP until a common agreement is 
reached or a rejection is decided. In the case of an agree-
ment, the next state is service provision. It encapsulates 
the actual required, executable skill in terms of triggering 
and monitoring its associated functions. All requests, even 
switching a skill on and off, require a negotiation (simple or 
complex). Since negotiation can also be interpreted as a 
skill, it can be assumed that it is always the primary involv-
ing the secondary skill. (Figure 9 (b) → skill encapsulation). 

The "wrapped" skills can be invoked in different ways: Call-
ing other state machines, direct connections (OPC UA, 
REST, ...) or skill-specific submodels. A common descrip-
tion of capabilities and skills is proposed for their uniform 
handling, referring to a reference model for common under-
standing in [27]. Along with that, a comprehensive ontology 
for modelling capabilities and skills in cyber-physical sys-
tems is introduced in [28]. On the other hand, the IDTA pub-
lished the Capability and Control Component submodels 
(CCS) as standardized representations of capabilities and 
skills in the AAS. In the CCS, skills are collected in the SMC 
Skills and a single skill is modelled via the SMC Skill. To 
reach the highest outcome, we compared in [37] the ontol-
ogy model to the IDTA submodel and identified strong com-
monalities but also missing elements. The further modelling 
of capabilities and skills for the AAS will build on these ex-
periences, starting we the development of a submodel of 
the bidding capability and their corresponding skills.  

The IDTA CC submodel is used here to propose a norma-
tive and interchangeable structure for the implementation of 
the skills of the bidding capability in terms of the state ma-
chine described above. For its creation in accordance with 
this submodel, the most relevant properties are shown in 
the UML-diagram in Figure 10: The SMC Skills comprise all 
the skills provided, each defined in a subordinated SMC 
Skill. The latter contains the basic information needed to 
call the skill, such as configuration parameters, error codes, 
or collections of references to other skills used by that skill. 
For its transfer to a Bidding Model, two skills are 

implemented: One to lead the negotiation from the cus-
tomer’s perspective (requester) and the other to lead the 
negotiation from the contractor’s perspective (provider). 
The current role of the asset is indicated by the Disabled 
property, which is set to either true or false. The SMC Pa-
rameters comprises a list of parameters that are used here 
to configure the states of the bidding state machines. Each 
parameter is defined by a name, type, direction and values. 
Here the Type is a state, the Name is assumed to be the 
name of the state and the Direction is usually InOut - indi-
cating that the state is a receiver and provider of data. The 
associated SMC Values consists of all the meta-info for in-
itializing the states and its transitions. However, unlike the 
original IDTA CC template, we have subordinated the SMC 
Values with additional SMCs Parameters instead of Prop-
erties. This allows to describe the states’ transition more 
precisely in terms of a state-transition table (Figure 12). 
These parameters are defined with the properties Type, 
Name, Direction and Enabled. 

 

(a) (b) 
Figure 9: (a) Interaction protocol based on VDI/VDE 2193 [35], (b) mapped to classes as states of a SP state machine 

 
Figure 10: UML-Diagram of adapted IDTA submodel Con-
trolComponentInstance, based on [22] 

VDI/VDE 2193 Part 2
class WaitforCallForProposal(object):

class CheckCapability (object): …

class CheckFeasibility (object): …

class CheckSchedule(object): …

class CalculateCosts(object): …

class SendProposal(object): …

class WaitForServiceRequesterAnswer(object): …

class ServiceProvision(object): … execution invoke

class SendCompletion(object): …

class reject, notunderstood, revision, error …

IT
ER

AT
IO

N
 L

O
O

P not understood

refusal

offer

no response

offer rejected

accepted

confirm

error

call for request

completion

MCDM

SKILL ENCAPSULATION

+Endpoint{00}: Ref [*] 

+ Type: Ref [1] 

ControlComponentInstance:: Submodel 

Endpoints::SMC Skills::SMC 

+Skill{00}: Skill [*] 

1 1 

Parameters::SMC Errors::SMC Uses::SMC 

+Skill{00} +ErrorCode{00} 

Values::SMC 

+Value: Prop<str> 

+Name: Prop<str> 
+Direction: Prop<str> 

+Type: Prop<str> 

1 1 1 

Parameter{00}::SMC 

Parameter{00}::SMC 
Changed here from the 
original IDTA template 
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Figure 11: Skills definition (Customer/Contractor) of the 
bidding capability, based on the IDTA submodel Control-
ComponentInstance [22] 

• Type identifies the parameter such as Current 
state, Target state or I4.0 message. 

• Name details the associated type, e.g. Input or 
Output of the type I4.0 message or Capability 
Check of the type Current or Target state. 

• Direction indicates whether the parameter is a re-
ceiver or a provider, or both, in the data stream. 

• Enabled indicates whether the parameter is ac-
tive or not. For example, if the parameter of type 
Target state with the name CheckFeasibility is 
true, it will be the next. 

 
 

Input Current state Next state Output 
I1 WaitForCfP CheckCapability O1 
I2 CheckCapability CheckFeasibility O2 
I2 CheckCapability NotUnderstood O2 
I2 CheckCapability Reject O2 
… … … … 
    

Parameter02 → Current state 
Type:  CurrentState 

Name:  State02_CheckCapability 
Values:  SMC 
   Parameter0201 → Input message (I2)  

 
 

 Parameter0202 → Output message (O2)  

 
 

 Parameter0203 → Next state  

  
 

 Type: TargetState  

  
 

 Name: State03_CheckFeasibility  

    Enabled: true  

 
 

 Parameter0204 → Not Understood  

   Parameter0205 → Refusal  

   Parameter0206 → Errors  
   

Figure 12: State Transition Table and an example of how to 
transfer to the adapted IDTA CC submodel ([21], [22]) 

As presented above, the capabilities and skills originally re-
quested by the SR from the SP are encapsulated in the bid-
ding process, where the execution of the associated skill(s) 
is triggered in the state class ServiceProvision. These skills 

can be defined by further CC submodels, as introduced ear-
lier, containing not only the metainformation about the skill 
itself used to negotiate in different states, but also the infor-
mation about how to invoke it. To make them available to 
the bidding state machine, the SMC Uses of the CC sub-
model IDTA is intended to collect all the skills in terms of 
their references (e.g. submodel ID). 

2.2.2. Tender Document Submodel 

For the bidding process, the service requester and service 
provider need a document that lists all the properties to be 
negotiated. This document must have a predefined struc-
ture that is known to all participants. The document is rep-
resented here by a submodel template. Its proposed con-
tent is generalised to be independent of the negotiation 
topic. The latter has to be customized by the user. The sub-
model data is exchanged as the message part of the I4.0 
language pattern. 

In general, a service is negotiated and therefore its descrip-
tion needs to be interpreted in the same way across busi-
ness partners, technologies or lifecycle phases within the 
interoperation [10]. Building on the IEC 61360 specification, 
[3] recommends the description of services with a property 
model. In line with this, Figure 13 shows the description of 
a service as a combination of meta, process and functional 
properties, or, in the words of the IEC 61360, attributes. 
Thus, the properties’ description goes beyond the “purely 
technical capabilities and may include, for example, eco-
nomic criteria such as delivery dates, cost and agreements 
regarding documentation or maintenance” [8]. 

The description can be implemented into the Asset Admin-
istration Shell by two Submodels, one considering the per-
spective of the SR, the other that of the SP. In fact, the sub-
model elements of both should be the same, except for the 
range of values of the properties themselves. For example, 
the SR specifies a single property value and the SP can 
supply the property in a certain range. Conversely, the SP 
offers a property with a single value, while the SR accepts 
a range of values for that property. If within the range, the 
decision-making procedures select the appropriate values, 
otherwise reject the SR’s request or SP’s offer.  

Following [27], the different properties of a service can be 
categorized by Submodel Collections (SMC), such as a 

 

Figure 13: Example of modelling a service description, 
based on [3], [33] 
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SMC TenderCriteria, which includes, for example, required 
quantities, price specifications, environmental limits or de-
livery time or locations. In a further step, e.g. [29] and [33] 
divide the service description into a technical and a com-
mercial part, which can be seen as two SMCs: The com-
mercial part describes the conditions of the service provi-
sion and specifies the desired delivery time, a place and a 
price of a service provision. In a broader context, environ-
mental or social properties could also be considered. The 
technical part includes information about the related item 
itself (e.g. type, dimensions) as well as functional properties 
that quantify the requested measures on the item in as 
much detail as necessary. Note that the item can be under-
stood as a workpiece in a manufacturing scenario and as 
an asset to be maintained in a maintenance scenario. Thus, 
Item is a more neutral expression in a general approach. 

Based on the above findings, a submodel template has 
been created to serve as a standard tender document. Fi-
gure 14 shows the general concept with some exemplary 
properties: The submodel labelled with the name of the ser-
vice is first divided into the TechnicalProperties and Com-
mercialProperties SMCs. Other SMCs may be added if nec-
essary. The SMC TechnicalProperties is initially clustered 
with the SMC ItemProperties and FunctionalProperties. 
The template must be customized for all available services, 
for both the SR and the SP. For example, Figure 14 shows 
some properties from the perspective of a SP that offers a 
range of values defined by lists or upper and lower limits. 
Chapter 3 shows how this template can be adapted and ap-
plied to autonomous bidding procedures between an air-
craft system surrogate and other participants in the MRO 
CPSS. 

 
Figure 14: SM Tender Document; example for SP 

3. EXPERIMENTAL IMPLEMENTATION 

Chapter 2 presents a theoretical view of how I4.0 compo-
nents could be used in an MRO environment to answer the 
research questions at the beginning. As a practical proof of 
concept, the interaction between different partners in a 
data-driven MRO CPSS is demonstrated through the imple-
mentation in our maintenance simulation model MaSiMO, 
introduced in [38]: Here an aircraft surrogate, a robotic sys-
tem and an HMI are equipped with the previously intro-
duced proactive AAS BOX. In this way, the participants are 
advanced to I4.0 components. In the scenario, the aircraft 
surrogate detects a problem and its monitoring proactive 

                                                           
4 Version 2.9.2; https://pypi.org/project/dronekit/ (02.08.2023) 

AAS requests a part replacement (CfP). The only recipient 
of this CfP is the robotic system which, after internal checks, 
returns a service proposal to the service requester (aircraft 
surrogate). The SR accepts the proposal and responds with 
an execution order.  During the service provision, the robot 
requests assistance from a human to complete its task.  

3.1. I4.0 Components in the CPSS 

3.1.1. Aircraft system as MRO service requester 

 
Figure 15:  Aircraft surrogate system with proAAS BOX 

An unmanned aerial vehicle, namely the Holybro X500, has 
been upgraded to an I4.0 component by installing a proAAS 
BOX (Figure 15). In the use case, it plays the role of both 
MRO service requester and, to some extent, service pro-
vider. The asset is a complex surrogate of an aircraft sys-
tem with a plenty of sensors, flight data and control func-
tions. Additional sensors were integrated to overcome miss-
ing data, such as directly measured engine rotation speed. 
The sensors provide data on acceleration, vibration, envi-
ronmental conditions, power status and more. The control 
functions execute external and internal commands, from 
simply turning a motor at a desired speed to a fully pro-
grammed flight mission. Everything is handled by an aircraft 
controller, namely a Pixhawk, which is connected to the 
proAAS BOX via its serial interface (USB). 

The data server introduced in 2.1 is used to extend the 
UAV’s ability to communicate bidirectionally via OPC UA 
and REST interfaces. Both are realized in Python (asyncua, 
flask) and use the dronekit library4 to access the UAV’s con-
troller. These interfaces are used to connect the UAV with 
the proactive AAS. The OPC UA server structures the prop-
erties into three domains as object nodes: 

• Command 
• Operational Data 
• Parameter 

The Command node groups all the variables that actively 
control the asset, from controlling the onboard data re-
corder to the UAV movements. The Operational Data node 
consists of monitoring and telemetry properties. And the 
Parameter node contains all the settings, such as calibra-
tion factors, to tune the behaviour of the UAV.  

For management and decision making, the proAAS BOX 
continuously requires the status and health of the aircraft 
system surrogate, which is provided by appropriate 
OPC UA values: An Operational Data node is divided into 
the groups Monitoring and Telemetry. These groups further 
cluster the data to specific system components or system 
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properties such as Propulsion, Structure, Power supply or 
System time, Attitude or Ambient pressure. The Monitoring 
node distinguishes between Condition indicators and Effi-
ciency indicators. The condition indicators are aggregated 
system indices that are calculated by separate running al-
gorithms to indicate the current or predicted health condi-
tions of the associated aircraft system. The framework of 
the health algorithms was developed at the DLR Institute 
MO [26] and adapted specifically for implementation in the 
proAAS BOX Data Server. In the current work, this frame-
work uses sensor data from the power supply system. In 
addition, a simplified fault detection system based on learn-
ing algorithms is implemented and trained to raise a fault 
flag in the event of abnormal vibrations. The efficiency indi-
cators go in a similar direction, but only directly record the 
physical efficiencies such as the ratio of thrust to required 
power. 

The proactive AAS independently decides if and when an 
MRO visit is required and thus an order must be triggered. 
For this purpose, a monitoring state machine runs continu-
ously in the AAS, evaluating all of the above OPC UA vari-
ables of the condition and efficiency metrics. When an 
event occurs, it sends an order (e.g. a propeller inspection) 
to the bidding state machine as it is introduced in chapter 
2.2.1: The state WaitForNewOrder receives the order, pro-
cesses it and forwards it as a request to the next state Call-
ForProposal. Before this all can happen, the proAAS must 
be configured and initialized with the digital representation 
(“digital twin”) of the UAV defined in the AASX format. Be-
sides its general description such as unique identification, 
nameplate or documents like CAD files, manuals or certifi-
cates like the EASA Form1, the AASX contains the sub-
models of interface descriptions and the capabilities and 
skills. Here, we focus on the latter only.  

The physical link between the aircraft system surrogate and 
the proAAS server is configured in the AASX by the As-
setInterfaceDescription submodel (see chapter 2.1), which 
consists of 96 OPC UA variables. As partially shown in Fi-
gure 16 for the propulsion condition indicators, all 96 varia-
bles are defined with their associated endpoint (OPC UA 
server URL + node ID) and features (e.g. writable = true). 
In addition, the AssetProperties submodel defines all the 
variables that can be used throughout the proAAS server 
framework, e.g. in the implemented state machines. These 
variables are connected to the corresponding values of the 
asset provided by the appropriate interface adapter (e.g. 
OPC UA) configured in the SM AssetInterfaceDescription. 
Here we have structured the internal values in the same 
way as the OPC UA data server. 

For the use case, a simplified logic is built into the proAAS 
to monitor selected system health indicators, processed by 
the algorithm mentioned above, and make decisions based 
on their values. For simplicity, the logic is part of the Wait-
ForNewOrder state of the embedded bidding state ma-
chine. When limit values are reached or are projected to be 
approached (Figure 17), the proAAS of the aircraft surro-
gate decides what action to take, such as requesting MRO 
treatments. The aircraft sends then a CfP with its require-
ments to the CPSS network via a dedicated MQTT broker 
to which several potential MRO providers are actually sub-
scribed (in the use case only one). 

The requirements are specified in an AAS submodel, 
namely RequesterMRObasic, in accordance with the intro-
duced tender document in Chapter 0. As shown in Figure 
18, it comprises the two SMC TechnicalProperties and 

CommercialProperties. The ItemProperties, a SMC of the 
TechnicalProperties, contains the meta-description of the 
aircraft, such as its certified type, dimensions or weight 
properties. It also includes the classification of the systems 
on which the MRO provider is required to have the capabil-
ity, skills and authorisations to work. In aviation, these sys-
tem classes can be associated with the FAA JASC/ATA 100 
reference system [15], which groups the aircraft elements 
into chapters. For example, Figure 18 shows that the ser-
vice requester is a UAV, is certified to CS-VLR, weighs 
1,5 kg and requires treatments for systems in terms of ATA 
Chapters 28 (fuel system), 53 (fuselage), 64 (tail rotor) and 
80 (starter system). In the SMC FunctionalProperties, the 
service requester details the required specifications of the 
requested skill, such as the expected type or scope of in-
spection, or for a repair process, the requirements for phys-
ical treatments or tolerances.  

 
Figure 16: Part of the UAV AASX file 

 

Figure 17: Example of system health development [26] 

For the CommercialProperties, the tender document will 
specify preferred delivery locations, countries or a range of 
expected delivery time and prices. For target setting, the 
aircraft could also request optimised values from external 
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cost-benefit services such as LCC or LCA, if available in the 
CPSS and accessible via AAS. Note that this is only a re-
duced number of possible properties for this example. They 
can also be extended to include properties with environ-
mental or social impacts in order to consider sustainable 
solutions. 

 
Figure 18: Tender document submodel for a basic MRO 
request with aircraft as service requester (example) 

Conversely, the aircraft can also act as a service provider, 
even as part of an MRO service. In this situation, the MRO 
provider acts as a requester and requests specific aircraft 
executions, from the delivery of documents (e.g. CAD files, 
certificates) to the operation of systems (e.g. engine runs, 
test or alignment flights). We have implemented the first ca-
pabilities, such as ServiceEngineGroundTest, which can be 
requested by the MRO provider using the bidding process. 
As shown in Figure 19, the tender document is adapted to 
the associated skill in terms of the functional characteristics 
offered by the aircraft, such as the required RPM, the dura-
tion of the test run and the throttle gradients (acceleration, 
deceleration).  

 
Figure 19: Tender document submodel for engine run-up 
request with MRO as service requester and aircraft as 
service provider (example) 
                                                           
5 https://www.universal-robots.com/products/ur10-robot/ 
  (Access 30.07.2023) 

These and other properties, such as monitoring values, are 
controlled in the related skill state machine via OPC UA. 
The entire flow of bidding interactions, including I4.0 com-
pliant data exchange via MQTT, all checks, decision mak-
ing or skill execution is the same as described in the previ-
ous chapters. Only the role of the aircraft has changed from 
SR to SP. During interoperation in the CPSS between all 
participants to perform MRO processes, the aircraft surro-
gate regularly changes its role to support the capabilities 
summarised in Table 1. Their implementation is either un-
der development or planned, but all have in common that 
they are encapsulated by the skills of the bidding capability. 

Aircraft role Capability 
 

By default 
SR+SP Bidding Procedure 
 

Extensions in progress 
SR Request MRO basic 
SR Request external data storage  
SP Provision engine run-up 
SP Provision of document EASA FORM1 
 

Planned extensions 
SR Request MRO advanced 
SR Request external decision support 
SP Provision of documents, data and files  
SP Provision of physical movements 
SP or SR t.b.d. 
  

Table 1: Roles of the aircraft surrogate in the CPSS and 
associated capability to request or provide services 

3.1.2. Robot as MRO service provider 

In the use case, a Universal Robots UR10e5 plays the role 
of an automated MRO service provider. Its application fo-
cuses on enabling its autonomous interaction with other as-
sets in the CPSS using a proactive AAS, rather than devel-
oping professional robot-based MRO skills. The latter are 
created as complex functions in separate projects, running 
on the robot's PLC or other performant controller. However, 
these skills will be implemented in the proactive AAS by en-
capsulating them as described in section 2.2.1. There, the 
skills are invoked by triggering the PLC or controller via ap-
propriate interfaces (e.g. OPC UA, REST). 

First, as with the aircraft system surrogate, a data server 
was built in Python. It uses a Python communication SDK 
developed and licensed by UnderAutomation6. It provides 
libraries to remotely control the robot and its effectors, with 
commands transmitted via Python dashboard controls or 
socket adapters. Additionally, a RDTE interface receives 
data streams from the robot to read real-time information on 
positions, status, inputs and outputs, the value of pro-
gramme variables, temperatures, voltages, currents, etc. 
Based on these interfaces, the programmed OPC UA 
server provides all properties as node ids via a network ac-
cessible endpoint. These OPC UA values are made availa-
ble in the proactive AAS of the robot by customizing the As-
setInterfaceDescription and AssetProperties submodels in 
the AASX file according to section 2.1.1 (Figure 7). The 76 

6 https://underautomation.com/  (Access 30.07.2023) 
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OPC UA variables consist of parameter, supervisory and 
control values used by the AAS to manage the UR10e as 
SP and SR in the CPSS. This includes autonomous deci-
sions, bidding interactions in terms of service provision (e.g. 
inspection, repair) and service requests (e.g. human sup-
port) or data persistence management. As the AAS is a dig-
ital representation (digital twin) of the robot UR10e, general 
data such as ID, documents, certificates are also defined by 
standardized submodels. For example, the International-
ised Resource Identifier (IRI, RFC 3987), recommended by 
IDTA, is used to uniquely identify the robot and all other as-
sets, such as the aircraft surrogate, in the CPSS. Here it 
consists of an imaginary DLR domain and a UUID: 

Robot ID: https://dlr.de/mo/asset/e95ea183a87f48d3811c2cae77388044 

Figure 20 shows the corresponding AASX file with the 
metadata submodels at the top. However, a further descrip-
tion of the metadata (nameplate, technical documentation 
etc.) used to build the digital representation is beyond the 
scope of this paper. Here we focus on the proactive part of 
the AAS: To implement the asset properties in the AAS, the 
associated SMCs in the middle of the figure link them to the 
data server and its OPC UA variables via their endpoints, 
e.g. as shown for the tool center point rotation TCP RX. The 
skills are collected in the SMC OperationalData and the 
submodels of the tender documents are at the bottom of the 
figure. 

 

Figure 20:  Reduced AASX definition for the UR10e in the 
proAAS with example of asset interface configuration 

For the present use-case, the relevant tender document 
submodel is marked in Figure 20 below, namely Pro-
viderMRObasic. It is the complementary counterpart of the 
submodel RequesterMRObasic send by the aircraft surro-
gate (see chapter 3.1.1 → Figure 18) and received by the 
robot. Its more detailed description is shown in Figure 21: 
the obvious difference between the two is that the service 
provider offers a range of its capabilities for each property 
requested. After receiving the aircraft’s tender document, 

the robot’s AAS checks that the number, name and type of 
the properties requested match the expected scheme (bid-
ding state machine → CapabilityCheck). If positive, the AAS 
then checks whether the requested values are within the 
feasible range: 

For example, the MRO provider offers its services in the 
main categories of Aircraft, Helicopters and Unmanned Aer-
ial Vehicles, which are represented by the MainCategory 
property as a list with AERO, HEL and UAV. The Refer-
enceCertification property is a list of all the certification 
specifications the MRO provider is allowed to work on, such 
as CS-VLR for Very Light Rotorcraft. The possible services 
cover different systems. These are indicated by ATA chap-
ters in the SystemClass range properties. For example, 
SystemClass_I, which corresponds here to the ATA cluster 
“Aircraft Systems”, indicates that the MRO provider only 
supports work on ATA Chapter 27 (“Flight Controls”) to ATA 
Chapter 33 (“Lights”). In SystemClass_II, “Aircraft Struc-
ture”, only works on “Fuselage” and “Nacelles” are sup-
ported. SystemClass_III and IV comprise elements of the 
propulsion system. In addition, the MRO provider has limi-
tations on the dimensions and weight of the aircraft and 
would also refuse the request if the aircraft is outside these 
limits (e.g. maximum allowable landing weight on platform). 

 

Figure 21:  Tender document submodel for a basic MRO 
with robot as service provider (example: inspection scan) 

The tender document also includes functional requirements 
for the requested service, such as granularity or acceptable 
tolerances. The MRO service provider also checks whether 
the service requester's requirements are feasible. However, 
it must be ensured whether these requirements are manda-
tory or optional values, as the MRO service provider de-
cides on the selection and settings of the appropriate MRO 
system in relation to the overall service requested. Both ap-
proaches are possible by considering an additional quanti-
fier as a Boolean indicating whether the required functional 
property is mandatory or not (see marking in Figure 21): 
The services requester requests an inspection with custom 
settings where only the tolerance requirements are manda-
tory. In the use case, all the technical requirements of the 
MRO requester can be met by the MRO service provider. 
Before returning the proposal to the MRO requester, the 
MRO provider balances the commercial properties in terms 
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of expected costs, times (slots and duration) and the opti-
mum location or provisioning. To prove the concept, these 
are fixed values that will be replaced by dynamic cost-ben-
efit calculations in later development. In the use case and 
for simplicity, the aircraft surrogate as the service requester 
accepts the conditions and sends a service order. 

The robot’s proactive AAS invokes the ordered service by 
instructing the PLC to load and execute the appropriate pro-
gram, e.g. “drone_primary_inspection.urp”. The program is 
one out of many on the PLC and is linked to its service def-
inition in the AAS. It simply takes pictures for inspection pur-
poses at all engine’s positions (Figure 22 left). At a certain 
point in our scenario, the MRO robot system needs human 
assistance and the proactive AAS sends a corresponding 
CfP to the CPSS. In our use case, an HMI system was ex-
tended to an Industry 4.0 component by equipping it with its 
own proactive AAS (see chapter 3.1.3). It responds to the 
robot's request and directs the human to perform the de-
sired task: safely replace the aircraft surrogate to complete 
the inspection. When the entire service is completed, the 
SP sends a completion message to the SR and, if required, 
a digital certificate of airworthiness such as EASA Form 1 

3.1.3. HMI as MRO service supporter 

Human involvement in the cyber-physical social system sig-
nificantly expands the service portfolio. This requires appro-
priate interfaces that can communicate in the I4.0 language. 
First, a web-based communication system is under devel-
oped. Its idea is based on a chat-like environment where 
CPSS participants can exchange requests and responses 
via human-readable messages. The web server was devel-
oped in Python using the Flask libraries, with real-time com-
munication between the GUI (browser) and the server via a 
socket data exchange (Flask-SocketIO). The GUI has only 
four buttons (Confirm, Reject, Not Understood, Request) 
and a message box to keep the application simple for the 
users. An augmented reality device is used to display the 
digital messages to the user while performing the task in the 
real world. In the message field the participants address 
their quotes with an “@”. Before one can join the service 
specific chat room, it is assumed that the bidding process 
of the requested service has been successfully finished. 
The selected service provider(s), in our example "MRO 
HUMAN", will be invited to enter the room and will be given 
further advice on how to complete the task  

  

Figure 22:  MRO SP inspects MRO SR (left); MRO SP 
(here robot) requests support by human SP (right) 

In fact, this kind of HMI system is treated as an asset and 
has also been encapsulated with a proactive AAS to ensure 
its I4.0 compliant integration into the CPSS. In preparation, 
the HMI has been extended by an OPC UA server, which is 
connected to the web server. Thus, OPC UA variables can 
be displayed directly in the web-based GUI and vice versa 
GUI variables are transmitted to the corresponding OPC UA 
variables. The OPC UA variables have been implemented 
in the AAS by specifying their properties and references in 

the AASX file as introduced in chapter 2.1.1. As with the 
other I4.0 components introduced before, the integrated 
bidding state machine negotiates the services based on a 
tender document. It is not yet fully defined, but as shown in  
Figure 24 the SMC FunctionalProperties refer to the capa-
bilities of the human with, where available, additional tools: 
For example, functionalities such as drilling diameter or 
depth, when using a hand drill, manual force ranges for lift-
ing or moving, as well as screwing specifications (type, 
torque) could be defined. Furthermore, only decisions on 
the continuation of the process could be requested.  

 

Figure 24: Submodel of the tender document for the re-
quest for human assistance by the MRO robot as re-
quester and a human as service provider (example) 

After the positive feasibility check of the requirements, the 
return of the service proposal to the requesting MRO sys-
tem (robot) and its acceptance, the interaction via the chat 

 

Figure 23: Developed GUI of the proposed HMI system 
as a chat room like interface with I4.0 compatibility 
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room begins. As shown in Figure 24, the MRO robot re-
quests the human for assistance in guiding the aircraft sur-
rogate to its final position (Figure 22 right). After the human 
acknowledges the request, the task is completed coopera-
tively. It depends on the design of the MRO system and the 
I4.0 components whether the human needs to confirm that 
the task has been completed, or whether the MRO robot 
decides this automatically. The latter is realised in our use 
case, and thus the MRO robot continues its inspection pro-
cess after the repositioning of the aircraft, together with the 
support of the human, until the end. 

4. CONCLUSION AND OUTLOOK 

The research questions were whether and how data-driven 
MRO environments could benefit from Industry 4.0 
knowledge. To answer these questions, in addition to a the-
oretical view, an experimental setup of a CPSS was de-
signed to test MRO-adapted Industry 4.0 technologies. The 
main finding is that building data-driven MRO environments 
based on Industry 4.0 knowledge is strong promising. With 
the Asset Administration Shell (AAS), the I4.0 community 
has introduced a concept for the realization of standardized 
"digital twins": The AAS provides both a meta-model for the 
digital representation of tangible and intangible assets over 
its life-cycle and the complementary framework for seam-
less, autonomous and proactive interaction between all par-
ticipants in a CPSS – cross-stakeholder, cross-company 
and cross-technology.  

In this paper, a Python-based proactive AAS is used to de-
velop Industry 4.0 components (I4.0C) for an exemplary 
data-driven MRO environment (requester/provider). In line 
with this, a hardware and software solution are presented 
to easily equip assets with the minimum technical require-
ments to operate as I4.0C. This was applied in a use case 
to an aircraft system surrogate, an MRO service provider 
and an HMI system for human MRO support. The self-man-
aged interactions in terms of service requests and provi-
sioning are based on a bidding protocol and logics of deci-
sion-making. In this protocol, tender documents are ex-
changed and negotiated between the AAS, which include 
technical or commercial properties. They need MRO 
aligned specifications, the first ideas of which are outlined 
in the paper. In an experimental setup, the successful in-
teroperation of assets in a data-driven MRO environment 
has been verified. Hereby the introduced proactive ASS 
BOX was used to create MRO I4.0 components of an air-
craft surrogate, an MRO robot and a human-controlled sup-
port system. In the use case, the participants solve an in-
spection task collaboratively with digital exchange of all 
necessary information and requests via the CPSS network 
infrastructure. In summary, all steps together show how 
AAS could be applied to data-driven MRO in aviation. 

Further developments will mainly focus on following topics:   

a. Implementation of the proactive AAS to develop 
further MRO assets into I4.0 components. 

b. Improving the presented I4.0 components to fully 
digital representations (static descriptions along 
with point e.)  

c. Development of cost-benefit and decision-support 
services either as AAS in-build algorithms or inde-
pendently working solutions as AAS in the CPSS. 

d. Development of tender documents (AAS sub-
model) for the I4.0 based bidding procedure to 
trade comprehensive MRO services in terms of 
functional and commercial properties. 

e. Integration of digital representations of certifi-
cates, manuals, drawings, etc., of the assets 
based on the adapted IDTA submodel Handover 
Documentation [20]. 

 

5. ABBREVIATIONS 

AAS Asset Administration Shell 
CC Control Component 
CfP Call for Proposal 
CPS Cyber-Physical System 
CPSS Cyber-Physical-Social System 
CSS Capability-Skill-Service 
EASA European Union Aviation Safety Agency 
FAA Federal Aviation Administration 
IDTA Industrial Digital Twin Association e.V. 
IIC Industrial Internet Consortium 
IIoT Industrial Internet of Things 
IIRA Industrial Internet Reference Architecture 
IoT Internet of Things 
IT Information Technology 
MaSiMO Maintenance Simulation Model at DLR-MO 
MCDM Multi-Criteria-Decision-Making 
MRO Maintenance, Repair and Overhaul 
OPC UA Open Platform Communication UA 
PI4.0 Plattform Industrie 4.0 
Prop Property 
RAMI 4.0 Reference Architectural Model Industry 4.0 
Ref Reference 
SCADA Supervisory Control and Data Acquisition 
SM Submodel 
SMC Submodel Collection 
SP Service Provider 
SR Service Requester 
TOPSIS Technique for Order Preference by Similarity 

to Ideal Solution 

6. REFERENCES 

[1] AAS Reference Modelling, 2021, Discussion Pa-
per, Plattform Industrie 4.0, Berlin, Germany, 
available online: https://www.plattform-
i40.de/IP/Redaktion/EN/Downloads/Publikation/AA
S_Reference_Modelling  
(accessed on 04.08.2023) 

[2] Belyaev, A.; Diedrich, C. Aktive Verwaltungs-
schale von I4.0-Komponenten. 2019, 
AUTOMATION – Leitkongress der Mess- und Au-
tomatisierungstechnik. VDI Verein Deutscher In-
genieure, Baden-Baden 

[3] Belyaev, A.; Diedrich, C. Erhöhung der Flexibilität 
und Robustheit zwischen Interaktionspartnern 
durch das Merkmalmodell, 2018, Automatisier-
ungstechnik, Volume 67, no. 3, pp. 193−207 
DOI: 10.1515/auto-2018-0103 

[4] Belyaev, A.; Diedrich, C.; Köther, H.; Dogan, A. 
Dezentraler IOTA-basierter Industrie-Marktplatz: 
Industrie-Marktplatz auf Basis von IOTA, eCl@ss 
und I4.0-Verwaltungsschale, 2020, Industrie 4.0 
Management, 36, ISSN: 2364-9208 

[5] Communication: 2030 Digital Compass: the Euro-
pean way for the Digital Decade, European Com-
mission, COMMUNICATION FROM THE 
COMMISSION TO THE EUROPEAN 

Deutscher Luft- und Raumfahrtkongress 2023

©2023



 

15 

PARLIAMENT, Brussels, 2021 Available online: 
https://commission.europa.eu/system/files/2023-
01/cellar_12e835e2-81af-11eb-9ac9-
01aa75ed71a1.0001.02_DOC_1.pdf (accessed on 
18.03.2023) 

[6] Cross-industry semantic interoperability, part one. 
2017, Blog, Embedded Computing Design (online 
print), publisher OpenSystems media, Scottsdale, 
USA Available online: https://embeddedcompu-
ting.com/technology/iot/cross-industry-semantic-
interoperability-part-one  
(accessed on 20.08.2022) 

[7] Details of the Asset Administration Shell Part 2 – 
Interoperability at Runtime – Exchanging Infor-
mation via Application Programming Interfaces, 
Specification document, 2021, Plattform Industrie 
4.0, Publisher: Federal Ministry for Economic Af-
fairs and Energy (BMWi), Berlin, Germany 
Available online: https://www.plattform-
i40.de/IP/Redaktion/DE/Downloads/Publikation/De
tails_of_the_Asset_Administra-
tion_Shell_Part_2_V1.html (accessed on 
19.07.2022) 

[8] Diedrich, C. et al. Information Model for Capabili-
ties, Skills & Services, 2021, Technical Report, 
WG Semantic and Interaction of I4.0 Components, 
Plattform Industrie 4.0 
DOI: 10.13140/RG.2.2.30098.53440 

[9] Diedrich, C.; Belyaev, A. Information Model for 
Capabilities, Skills & Services, 2022, Kommu-
nikation und Bildverarbeitung in der Automation, 
Technologien für die intelligente Automation 14, 
Springer Vieweg, Germany 
DOI: 10.1007/978-3-662-64283-2_8 

[10] Diedrich, C.; Schröder, T.; Belyaev, A. Interopera-
bility of Cyber Physical Systems, 2022, Kommu-
nikation und Bildverarbeitung in der Automation, 
Technologien für die intelligente Automation 14, 
Springer Vieweg, Germany 
DOI: 10.1007/978-3-662-64283-2_8 

[11] Digital Twin and Asset Administration Shell Con-
cepts and Application in the Industrial Internet and 
Industrie 4.0. An Industrial Internet Consortium 
and Plattform Industrie 4.0 Joint Whitepaper, 2020 
Available online: https://www.plattform-
i40.de/IP/Redaktion/EN/Downloads/Publikation/Di
gital-Twin-and-Asset-Administration-Shell-Con-
cepts.html (accessed on 18.03.2023) 

[12] DIN EN IEC 63278-1 VDE 0810-781:2022-07 As-
set Administration Shell for industrial applications, 
2022, VDE Standards, VDE Verlag, Berlin 

[13] DIN SPEC 91345:2016-04 Reference Architecture 
Model Industrie 4.0 (RAMI 4.0), DIN Deutsches In-
stitut für Normung e. V., 2016, DOI: 
10.31030/2436156 

[14] European Research Cluster on the Internet of 
Things, 2020, Available online: http://www.inter-
net-of-things-research.eu/index.html (accessed on 
18.03.2023). 

[15] FAA Joint Aircraft System/Component Code – Ta-
ble and Definitions, 2008, Federal Aviation Admin-
istration, Regulatory Support Division, Oklahoma, 
USA, available online:  
https://av-info.faa.gov/sdrx/docu-
ments/JASC_Code.pdf (accessed 03.08.2023) 

[16] Functional View of the Asset Administration Shell 
in an Industrie 4.0 System Environment, 2021, 
Discussion Paper, Plattform Industrie 4.0, Berlin, 
Germany, available online: https://www.plattform-
i40.de/IP/Redaktion/DE/Downloads/Publikation/Fu
nctional-View (accessed on 02.08.2023) 

[17] Grunau, S.; Redeker, M.; Göllner, D.; Wisniewski, 
L. The Implementation of Proactive Asset 

Administration Shells: Evaluation of Possibilities 
and Realization in an Order Driven Production. 
2022, In: Jasperneite, J., Lohweg, V. (eds) Kom-
munikation und Bildverarbeitung in der Automa-
tion. Technologien für die intelligente Automation, 
vol 14. Springer Vieweg, Berlin, Heidelberg DOI: 
10.1007/978-3-662-64283-2_10 

[18] IDTA 01001-3-0, Specification of the Asset Admin-
istration Shell Part 1: Metamodel, Specification, 
2023, publisher: Industrial Digital Twin Associa-
tion, Frankfurt am Main, Germany, available 
online: https://industrialdigitaltwin.org (accessed 
on 02.08.2023) 

[19] IDTA 01005-3-0, Specification of the Asset Admin-
istration Shell Part 5: Package File Format 
(AASX), Specification, 2023, publisher: Industrial 
Digital Twin Association, Frankfurt am Main, Ger-
many, available online: https://industrialdigitalt-
win.org (accessed on 02.08.2023) 

[20] IDTA 02004-1-2, Handover Documentation, Sub-
model Template of the Asset Administration Shell, 
2023, publisher: Industrial Digital Twin Associa-
tion, Frankfurt am Main, Germany, available 
online: https://industrialdigitaltwin.org (accessed 
on 04.08.2023) 

[21] IDTA 02015-1-0, Control Component Type, Sub-
model Template of the Asset Administration Shell, 
2023, publisher: Industrial Digital Twin Associa-
tion, Frankfurt am Main, Germany, available 
online: https://industrialdigitaltwin.org (accessed 
on 02.08.2023) 

[22] IDTA 02016-1-0, Control Component Instance, 
Submodel Template of the Asset Administration 
Shell, 2023, publisher: Industrial Digital Twin As-
sociation, Frankfurt am Main, Germany, available 
online: https://industrialdigitaltwin.org (accessed 
on 02.08.2023) 

[23] Jacoby, M.; Jovicic, B.; Stojanovic, L.; Stojanovi´c, 
N. An Approach for Realizing Hybrid Digital Twins 
Using Asset Administration Shells and Apache 
StreamPipes, Article, Information, 2021, 12, 217. 
DOI: 10.3390/info12060217 

[24] Jacoby, M.; Volz, F.; Weißenbacher, C.; Stoja-
novic, L.; Usländer, T. An approach for Industrie 
4.0-compliant and data-sovereign Digital Twins: 
Realization of the Industrie 4.0 Asset Administra-
tion Shell with a data-sovereignty extension, Arti-
cle, Automatisierungstechnik, vol. 69, no. 12, 
2021, pp. 1051-1061, DOI: 10.1515/auto-2021-
0074 

[25] Kagermann, H.; Wahlster, W. Ten Years of Indus-
trie 4.0, 2022, Sci 2022, 4(3), 26.  
DOI: 10.3390/sci4030026 

[26] Kamtsiuris, A.; Raddatz, F.; Wende, G A Health 
Index Framework for Condition Monitoring and 
Health Prediction, 2022, Conference: 7th Euro-
pean Conference of the PHM Society, Volume 7 
DOI: 10.36001/phme.2022.v7i1.3324 

[27] Köcher, A.; Belyaev, A.; Hermann, J.; Bock, J.; 
Meixner, K.; Volkmann, M.; Winter, M.; Zimmer-
mann, P.; Grimm, S.; Diedrich, C. A reference 
model for common understanding of capabilities 
and skills in manufacturing, 2023, Automatisier-
ungstechnik, Volume 71, no. 2, pp. 94-104 
DOI: 10.1515/auto-2022-0117 

[28] Köcher, A.; Hildebrandt, C.; Vieira da Silva, L.; 
Fay, A. A Formal Capability and Skill Model for 
Use in Plug and Produce Scenarios, 2020, IEEE 
conference, ETFA, Wien, Austria 
DOI: 10.1109/ETFA46521.2020.9211874 

[29] N.N. Specification Testbed „AAS networked “: Pro-
active AAS - interaction according to the VDI/VDE 
2193, 2019, Technical Report, University Magde-
burg, Institute for Automation Engineering 

Deutscher Luft- und Raumfahrtkongress 2023

©2023

https://doi.org/10.36001/phme.2022.v7i1.3324


 

16 

https://www.lia.ovgu.de/lia_media/LIA_Medien/ 
AASnetworked.pdf (accessed on 27.07.2023) 

[30] Pakala, H. K.; Käbisch, S. Integration of asset ad-
ministration shell and Web of Things, 2021,  
DOI: http://dx.doi.org/10.25673/39570  
(accessed on 11.07.2023) 

[31] SCI4.0, DIN/DKE, German Standardization 
Roadmap Industrie 4.0, 2020, Version 4, Berlin: 
DIN and Frankfurt(M): DKE. 
Available online: https://www.din.de/de/forschung-
und-innovation/themen/industrie4-0/roadmap-in-
dustrie40-62178 (accessed on 18.03.2023) 

[32] Structure of the Administration Shell, continuation 
of the development of the reference model for the 
Industrie 4.0 component, 2016, Plattform Industrie 
4.0, Working Paper 
Available online: https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/
structure-of-the-administration-shell.html (ac-
cessed on 20.08.2022) 

[33] Urban, C.; Belyaev, A.; Diedrich, C. Verwaltungs-
schale-basierter Ansatz für die Umsetzung von 
auftragsgesteuerter Produktion, 2022, Conference 
paper, 23. VDI-Kongress AUTOMATION – Leit-
kongress der Mess- und Automatisierungstechnik, 
Baden-Baden, Germany 

[34] VDI/VDE 2193 Part 1:2020-04 Language for I4.0 
Components - Structure of messages, VDI/VDE 
guideline 2020, VDI-VDE Manual, Düsseldorf 

[35] VDI/VDE 2193 Part 2:2020-01 Language for I4.0 
components - Interaction protocol for bidding pro-
cedures, VDI/VDE guideline 2020, VDI-VDE Man-
ual, Düsseldorf 

[36] Verwaltungsschale in der Praxis, Discussion 
document, 2020, Plattform Industrie 4.0, Publis-
her: Federal Ministry for Economic Affairs and 
Energy (BMWi), Berlin, Germany, available online: 
https://www.plattform-
i40.de/IP/Redaktion/DE/Downloads/Publikation/20
20-verwaltungsschale-in-der-praxis.html  
(accessed on 19.07.2022) 

[37] Vieira da Silva, L. M.; Köcher, A.; Gill, M.; Weiss, 
M.; Fay, A. Toward a Mapping of Capability and 
Skill Models using Asset Administration Shells and 
Ontologies, 2023, preprint, arXiv, Computer Sci-
ence  
DOI: 10.48550/arXiv.2307.00827 

[38] Weiss, M.; Wicke, K.; Wende, G. MaSiMO - A Hy-
brid Experimental Platform for the Simulation and 
Evaluation of Data-Driven Maintenance Enter-
prises, 2022, Paper, Deutsche Gesellschaft für 
Luft- und Raumfahrt - Lilienthal-Oberth e.V. 
DOI: 10.25967/570154 

[39] Winkler, D..; Gill, M. S.; Fay, A. The Asset Admin-
istration Shell as a solution concept for the realisa-
tion of interoperable Digital Twins of Aircraft Com-
ponents in Maintenance, Repair and Overhaul, 
2022, Paper, Deutsche Gesellschaft für Luft- und 
Raumfahrt - Lilienthal-Oberth e.V. 
DOI: 10.25967/570274 

 

Deutscher Luft- und Raumfahrtkongress 2023

©2023




