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Abstract

In this paper, the methodology to implement an inference algorithm based on the robot parameters for process
execution on different Key Performance Indicators (KPI’s) is presented. This work is part of holistic objective to
implement a system to perform virtual validation of automated process with robots, where the impact of relative
position of robot to required task and vice-versa could be inferred virtually. For the above implementation,
it is proposed to develop the digital model of the necessary infrastructure in the simulation environment. To
start with, computational data from simulation is stored to a database, which is then analysed and appropriate
regression based inference model is formulated. To ensure that the digital model imitates the real-time system,
the feedback data from hardware execution is used to improve the parameters of regression model. With this
implementation, the digital model would represent the digital twin (DT) of the hardware under consideration.
The whole execution is performed on the pre-assembly cell at the Institute for System Architectures in Aero-
nautics, Hamburg. Use case for the digital twin implementation is the pre-assembly of overhead structural
truss that assists in realizing the modularized cabin assembly process. Implementation of simulation model for
cabin assembly is a two-fold approach, where the robot localization for reachability is computed followed by
computation of joint trajectories. From the obtained trajectories, the energy and time consumed by the robot
for a given task is calculated. The computed information is then stored in a database, which is then fed to an
inference algorithm. Implementation of the algorithm is desired based on the time taken for path computation,
and using this algorithm the optimal robot location and joint angles for any new unknown task could be com-
puted.
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1. INTRODUCTION

Automation in Aerospace has been less emphasized
due to the reason that the product volumes are
insignificant compared to the product life-cycle. Due
to the fact that products are highly customizable
depending on customer’s requirements, deploy-
ing full-fledged automation in such environment is
uneconomical. A relevant constraint to realize an au-
tomation system is the implementation deadline [1].
To improve automation’s footprint in an economical
manner, FMS1 is deployed [2]. For a successful
FMS1 implementation, virtual commissioning(VC)
plays greater role to test the necessary systems in
advance for successful deployment [3] [4] [5].
Validating the shop-floor integration beforehand in or-
der to speed up the real-time installation process, VC2

is gaining importance [6]. It is estimated that VC re-
duces the number of on-site man hours for installa-
tion to 50%. This is achieved by building the produc-
tion systems virtually and to simulate the commission-
ing process. This allows the organization to validate
the operation of a new systems before implementing
in the physical environment. Understanding the be-
haviour of the different systems plays important role
in successful validation for VC2 [7]. Usually in VC, it
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is essential to perform "Hardware-in-loop (HIL)" with
PLC controlling the hardware or at best "Software-in-
loop" with an emulated PLC [6]. The presented work
tries to enhance VC, in an attempt to make it more
informative and more virtual.
There are different ways to test the control systems [3]
in an industrial shop-floor:
1. Both shop-floor and the control system are real
(Traditional way).
2. Simulated shop-floor with real control system (Sim-
ulated shop-floor ].
3. Simulated shop-floor control system in real shop-
floor (Reality in-loop).
4. Both shop floor and it’s control are simulated (Of-
fline simulation).
Of all the above ways, offline simulation is cost effec-
tive, but the feasibility isn’t proven since everything is
virtual. All the other methods need either shop-floor or
the control system to be physical. This work enhances
the validation through offline simulation, such that the
virtual analysis of the hardware would not only be cost
effective but also paves the way for better shop-floor
planning. Since it differs from traditional VC2, the term
"virtual validation" is used to indicate the work’s con-
tribution. Also it is important to understand why the
term "digital twin" used is this work, although there
is only virtual validation being made. In the holistic
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implementation, the digital model would interact with
the real world objects, and this model exhibits the
real time hardware behaviour. Hence the term "dig-
ital twin" is used to represent the virtual model.
For successful understanding of behaviour virtually,
it is important to generate the virtual model that ex-
actly imitates the real hardware. With the generated
virtual model, it would be possible to simulate and
perform validation based on different KPIs3 (such as
cycle time, energy etc). Usually faster cycle time is
preferred, but Industry 5.0 emphasizes the energy ef-
ficient automation for a sustainable production. En-
ergy conservation is becoming highly important with
increasing automation as energy becomes more ex-
pensive and scarce with increasing population and
demand [8]. Importance of energy conservation could
be justified by the number of researches performed on
this topic [9].
Contributing to optimal process execution, DLR-SL4

is working on implementing the digital thread for the
aircraft cabin assembly process. In the perspective
of assembly process, digital thread refers to link be-
tween modules starting from design until assembly.
This work is part of digital thread, where implementa-
tion of digital twin model is envisioned for automated
cabin assembly process. There are two stages in
the digital twin implementation, first the computations
are performed based on robot kinematics and dynam-
ics model for different robot tasks and the results are
stored in database. The results of the robot param-
eters estimation are compared with parameters from
real time execution, and the error is computed. This
error is used for tuning the learning parameter in the
regression model. This implementation ensures that
the digital twin of the hardware under consideration is
complete and correct. With the accurately described
digital twin, it would be then possible to perform virtual
validation that is accurate and reliable. This paper il-
lustrates the part of whole approach, in positioning
the robot for different tasks and computing their asso-
ciated time and energy.
The paper is structured in following manner: Section
2 describes the literature overview of existing work
in robot energy optimization. Section 3 summarizes
technical background on hardware infrastructure and
process work-flow with regards to this work. Method-
ology of the whole implementation ideas is presented
in section 4 followed by actual implementation to the
overhead-structural truss use-case in section 5. The
results of the implementation is discussed in section
6, where the effectiveness of regression model is
analysed. Next steps is presented in section 7 that
describes the further work of the holistic idea.
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2. LITERATURE REVIEW

Virtual Commissioning

As already mentioned existing approaches on VC2

simulates the hardware with real control system.
Tobias Lechler et. al [6] proposed digital twin based
on virtual factory in virtual reality (VR), where real
time bidirectional data integration between physical
systems and VR is established. M. Dahl et.al [4]
developed a formal model that is used for visualizing,
analysing and simulating robot based production
system. A framework "Integrated Virtual Prepara-
tion and Commissioning"(IVPC) is introduced that
supports HIL and it performs continuous iterations
on the "Virtual Manufacturing Model (VMM)". Pro-
cess sequencing is performed by the control logic
that is applied on VMM, and any changes to VMM
structure (such as adding a new robot) would auto-
matically update the control logic. An enhancement
is developed in [10], where optimizing the process
sequence based on dynamic VMM behaviour is
shown. Multi-robot interactive control using mixed
reality is proposed by [11] et. al., where a system
architecture for multi-robot control in a common
coordinate system is implemented. In their previous
work [12], a mixed-reality(MR) interface to program
and visualizing robot path is developed. Based on the
goal defined by the user (via MR), the shortest path
is computed. Moreover it is possible for the user to
customize the computed path, by changing/introduc-
ing intermediate points and appropriate time optimal
trajectory is computed. Schamp [5] et. al. used
Automation ML(AML) for communicating information
between different hierarchical levels in the Computer
Integration Manufacturing(CIM) pyramid.
Shahria et. al. [13] introduced a mixed reality frame-
work for collaborative robot in the context of patient’s
rehabilitation in field of medicine. A framework is es-
tablished where the interaction between MR control
to the digital twin (DT) of the robot is established,
with DT mirroring the co-bot under consideration. DT
data is then collected to a Azure platform, machine
learning is proposed for understanding the patients’
improvement based on correlating sensor data (like
torque, temperature and force) to the ailment key met-
rics such as range of motion, resistance etc.

Time and energy conservation in industrial envi-
ronment

Immense work has been performed in trajectory
planning of robots with different objectives. Time op-
timization and smooth trajectory planning is proposed
by Zhang,Tie [14], where the optimization is per-
formed in parameter space of the TCP (Tool Center
Point). The time optimal trajectory is obtained based
on constraining acceleration and velocity. Trajectory
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optimization is then followed by vibration control
using feed-forward method. The proposed method is
tested with a kuka robot, where the TOSTP5 yielded
better results for residual vibration compared to
TOTP6. Zribi,Sameh [15] proposed seven-degree
polynomial function to suppress snap (derivative of
jerk) in order to minimize residual vibrations. Con-
tinuous jerk is achieved for minimizing the vibrations
and the smoothness of trajectory is verified with the
acceleration profile.
There has been quite some work carried on the re-
search in the field of energy conservation for robotic
systems. A list of existing research work are provided
by Giovanni et. al [9], which explains the different
existing strategies for energy conservation from both
hardware and software perspectives. Researches
based on different hardware capabilities such as
robot type, energy storing devices and lighter robot
arms are presented. From Software perspective, the
approaches on trajectory optimization and operation
scheduling are presented. Software approaches
are more relevant to our work, since trajectory op-
timization is envisioned for energy optimal process
execution. Not all of the existing approaches consider
payload characteristics while designing energy effi-
cient trajectories. The other approach on operation
scheduling is out-of scope for this work.
Scalera, Lorenzo et al. [16] proposed a methodology
to optimally place the robot task for a 4-DOF7 ma-
nipulator for minimal energy consumption. Using La-
grangian approach, the required torque is computed
for a task with trapezoidal speed profile. Energy con-
sumption is calculated and influence of start and tar-
get points of robots within robot workspace is pre-
sented. The placement of task in the robot workspace
could be determined based on the analysis for min-
imal energy consumption. Spensieri, Domenico, et
al [17] presents the methodology in positioning the
robot for specific task, where the robot location is as-
certained for minimal cycle time. The evaluation of
robot location is carried for different complex levels
(such as number of spot welding points, no collision
scenario and brute force method for minimal cycle
time) for welding application.
Meenakshi Sundaram, Ashok [18] developed robot
capability maps (CMAPs) for robot assisted surgeries.
The idea is to find the optimal location for robot, so to
avoid any complications on robot reachability during
the time of surgery. Task-based preoperative setup
is proposed based on genetic algorithms (GA), with
highest possible dexterity and good overall reacha-
bility. Computing the inverse kinematics for reacha-
bility followed by inverse dynamics for different con-
figurations is presented by Mohammed Abdullah et.
al. [19], where the first three robot joints are used for
computing inverse kinematics on robot’s reachability.
The joint configurations from inverse kinematics are
then used for inverse dynamics computation, wherein

5Time Optimal Smooth Trajectory Planning
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FIG 1. Overhead structural truss in a cabin environ-
ment

Newton-Euler algorithm is used for computing neces-
sary parameters for energy consumption. Based on
the computed energy consumption, joint configura-
tions (from inverse kinematics) corresponding to lower
energy usage is chosen.
From the existing researches it is seen that the robot
performances is based of different factors such as
robot position w.r.to task and vice versa, hardware de-
vices, type of trajectories etc. The work presented in
this paper tries to evaluate the effect of above men-
tioned factors and to present the result of analysis in
MR. The idea of utilizing regression model is to re-
duce the interaction time in MR for any new target
object in the environment.

3. TECHNICAL BACKGROUND

The use-case for digital twin implementation is the
pre-assembly of overhead structural truss. This
structural element supports the physical assembly
segregation of the overhead cabin components from
frames. It helps in modularizing the assembly pro-
cess, where integration and disintegration of cabin
overhead components from the frames are easier.
Taking modularized cabin assembly into account,
this element allows the possibility to perform some
assembly operations outside cabin environment.
The element is shown in FIG 1, where it can be
seen that cabin components such as ceiling pan-
els, sidewall panels are connected to the Overhead
structural truss. This structural element is the main
support to attach the overhead bins (also known as
hat-racks) to the frames as shown in FIG 2. In the
pre-assembly process the necessary components of
the overhead structural truss are picked, placed and
riveted (where-ever applicable) by the robots.
The whole execution is taking place in pre-assembly
station as shown in FIG 3. There are two robots
(UR10e and Bosch-APAS) placed on the linear axis
on the pre-assembly cell. There are sensors installed
in the pre-assembly cell, so that collaborative work
between human and robots is possible. The virtual
model of the pre-assembly cell is shown in FIG 4.
This work on digital twin retrieves input from process
planning, that delivers information on component lo-
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FIG 2. Overhead bins on Overhead structural truss

FIG 3. Pre assembly cell at DLR-SL Hamburg

gistics and components availability along with target
location (or the task location) on the pre-assembly
cell. This information is provided by FUGA, (Fuselage
Assembly Generator : a knowledge based fuselage
design tool developed by DLR), which describes the
target location in target frame. The information on
sequence and target location is given as a .json file,
and this looks as in Listing 1.
Listing 1 describes the different locations on the lin-
ear axis on the pre-assembly cell, where the robot
perform the assembly operations. The field ranking,
describes the order of sequence and id describes the
corresponding process to be executed in the simula-
tion. The fields tcp_y, tcp_x, tcp_z describes the lo-
cation of robot on the linear axis. Since, the linear
axis moves in Y-direction, only the values of tcp_y,
changes in the provided json data. The location data
is used as initial information to analyse the robot’s
reachability.

{"process1": {"tcp_y": 0.300, "tcp_x": 0.595,

"tcp_z": 1.103, "robot_id": "APAS", "

ranking": 1, "id": "subset_1"},

"process2": {"tcp_y": 1.040 , "tcp_x": 0.595,

"tcp_z": 1.103, "robot_id": "APAS", "

ranking": 2, "id": "subset_2"},

"process3": {"tcp_y": 1.800 , "tcp_x": 0.595,

"tcp_z": 1.103, "robot_id": "APAS", "

ranking": 3, "id": "subset_3"},

"process4": {"tcp_y": 2.500 , "tcp_x": 0.595,

"tcp_z": 1.103, "robot_id": "APAS", "

ranking": 4, "id": "subset_4"},

"process5": {"tcp_y": 3.100 , "tcp_x": 0.595,

"tcp_z": 1.103, "robot_id": "UR10e", "

ranking": 1, "id": "subset_5"},

FIG 4. Virtual representation of the pre assembly cell

"process6": {"tcp_y": 3.100 , "tcp_x": 0.595,

"tcp_z": 1.103, "robot_id": "UR10e", "

ranking": 2, "id": "subset_6"},

"process7": {"tcp_y": 3.800 , "tcp_x": 0.595,

"tcp_z": 1.103, "robot_id": "UR10e", "

ranking": 3, "id": "subset_7"},

"process8": {"tcp_y": 4.700 , "tcp_x": 0.595,

"tcp_z": 1.103, "robot_id": "UR10e", "

ranking": 4, "id": "subset_8"}

}

Listing 1. Sample JSON data for sequential execution

The information on target location is provided by
FUGA, which generates models for different fidelity
levels based on knowledge based approach [20].
From the assembly perspective, relevant informa-
tion such as assembly locations of the robots are
provided. This can be seen in Listing 2, where
the attachment information is provided between the
hat-racks and the frame. With this attachment in-
formation, it would be therefore possible to compute
the robot orientation for optimal energy in assembly
operations and to simulate the robot for assembly
operations inside the cabin environment. The infor-
mation on assembly locations on the pre-assembly
table is also modeled similar to the Listing 2.

{"LuggageCompartmentsAttachment0000": {

"LuggageCompartments0001": {"

transformation": {"translation": { "x":

-0.0, "y": 1.246, "z": 1.787}}} ,

"C01": {"transformation": {"translation":

{ "x": -0.0, "y": 1.361, "z": 1.787}}}} ,

"LuggageCompartmentsAttachment0001": {

"LuggageCompartments0001": {"

transformation": {"translation": { "x":

0.533 , "y": 1.246, "z": 1.787}}} ,

"C02": {

"transformation": {"translation": { "x":

0.533, "y": 1.361, "z": 1.787}}}}}

Listing 2. Sample JSON data from FUGA regarding
assembly information

Using the sequence information and the assembly lo-
cation from process planning as inputs, this paper elu-
cidates the methodology to determine the robot pa-
rameters for optimal time and energy task execution.
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The presented work begins with, analysing the robot
position on the linear axis followed by the robot task
analysis. Total energy consumed is the sum of two
components as shown:

EnergyTotal = EnergyLinearAxis + EnergyRobots

TimeTotal = TimeLinearAxis + TimeRobots
(1)

4. METHODOLOGY

The proposed holistic approach involves describing
the system architecture for virtual validation of cabin
assembly process. In the vision of implementing
FMS8 for a cabin shop-floor, this work supports the
implementation by developing a framework that is
useful to analyse and understand robot behaviour for
shop-floor tasks. The framework contains accurate
digital twin (DT) model of the robot under consid-
eration. The purpose of DT implementation is to
understand the robot behaviour for real-time robot
tasks in mixed reality(MR) environment.

4.1. Offline computation

Describing the digital twin is a two-step process, in
which theoretical computations based on mathemat-
ical description is performed first, followed by gener-
ating a linear regression model. In the second stage,
the computed data is validated against the real-time
data and regression model improvisation is proposed.
Initially, the kinematic analysis of the robot for differ-
ent robot tasks are performed. The kinematic analysis
is performed for different trajectories such as splines,
polynomial functions etc. Based on the outcome of
kinematic analysis, dynamic analysis follows to com-
pute the time and energy consumed by the robot. This
is performed by analysing the robot dynamic model
using Lagrangian approach with inclusion on effects
of external payload (crown module components). The
outcome of the whole simulation is stored in Mon-
goDB. Using the stored information, a linear regres-
sion model is trained. To ensure that the DT describes
respective hardware accurately, the accuracy of linear
regression model prediction is improved based on the
real-time execution of robot tasks. The above eluci-
dated methodology of DT is shown in FIG 5.
The detailed information on different computational
modules are presented here:

Initial analysis on robot reachability

This work extensively uses klampt python library for
robot analysis. As earlier mentioned, this paper de-
scribes the two-fold approach. At first, the inverse
kinematics is performed at different locations on the
linear axis. Based on the reachability analysis us-
ing inverse kinematics, the probable locations of the
robot on the pre-assembly cell are determined. Out

8Flexible Manufacturing Systems

FIG 5. Digital twin model flow

the obtained probable locations, the path planning for
the task is carried out. The path planning indicates
the possibility of task execution based on the environ-
mental constraints. This is shown in FIG 6.

Trajectory analysis

For each of the obtained locations on the pre-
assembly cell from 4.1, the initial path planning
is made for the robot task. The robot task in this
work corresponds to place of crown module jigs
components in the respective holding structure. The
trajectory planning in this work performs the planning

FIG 6. Initial linear trajectory based on reachability
analysis
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FIG 7. Trapezoidal trajectory of the robot

based on robot kinematics and not the dynamics.
Due to this reason, the influence of external load isn’t
taken into consideration for trajectory planning. From
the obtained path from motion planning algorithm, the
trajectory planning is carried for different trajectory
types (such as cosine, trapezoidal etc.). The time and
energy required for each trajectory is then computed.
Different trajectories that are analysed in this work is
presented hereafter.

4.1.1. Trapezoidal trajectory

This trajectory profile is widely used in the industrial
motor drives due to it’s simplicity and the capability to
achieve low task cycle time [21]. It comprises three
motion steps: 1. constant acceleration 2.constant ve-
locity and 3.constant deceleration. This profile isn’t
suited for high-speed operations, due to the nature of
induced jerk [22] and jerk isn’t well suited for minimal
energy operations [23]. This work assumes that high
speed operations are avoided due to the collabora-
tive nature of the environment, so jerk is not going to
be infinite. The trapezoidal trajectory is shown in FIG
7. By default Klampt library ramps up the velocity for
1/4th of the total execution time, stays constant for the
1/2th of the time and ramps down for the 1/4th of the
time.

4.1.2. Triangular trajectory

Another form of trajectory that velocity ramped up for
first 1/2 of the time and ramped down for another 1/2
of the time. This is not very much suitable for energy
optimization, since the ramping up and ramping down
may introduce jerk at certain velocities and the limit-
ing velocity is identified based on loading conditions,
such that jerk is minimum.

4.1.3. Cosine trajectory

In this work two forms of cosine trajectories for energy
optimization is verified. By definition, cosine trajectory
in klampt plans cosine trajectory based on the follow-
ing equation:

f(x) =
1− cos(x)

2
(2)

FIG 8. Theoritical cosine plot of robot joint velocity

The velocity profile of such trajectory is shown in FIG
8, where the velocity vector experiences sharp direc-
tional changes. With an attempt to minimize jerk this
work proposes the other formulation as prescribed in
[24], where jerk is minimized which is desired for op-
timal energy consumption. Due to this the following
second order cosine trajectory is adopted [24]:

x = acos((2πt)/T ) + bt2 + ct+ d(3)

v = −a(2π/T )sin(2πt/T ) + 2bt+ c(4)

a = −a(2π/T )2cos(2πt/T ) + 2b(5)

j∗ = a(2π/T )3sin(2πt/T )(6)

The different terms a, b, c, d are solved based on
the boundary conditions for different parameters (dis-
placement, velocity, acceleration and jerk) and they
are described as follows:

t = 0; θ = 0 t = tf ; θ = θf(7)

t = 0; θ̇ = 0 t = tf ; θ = 0(8)

t = 0; θ̈ = 0 t = tf ; θ̈f = 0(9)

t = 0;
...
θ = 0 t = tf ;

...
θ f = 0(10)

These boundary conditions only describe the limits on
first and final points of the trajectory. Intermediate
boundary conditions are described accordingly (like
continuous velocity, jerk etc.)

4.1.4. Parabolic trajectory

Parabolic trajectories are better in terms of smoothing
trajectories. With a blend profile near to the junction
of trajectories, it is possible to steer the robot at con-
stant acceleration [25]. This is shown in FIG 9, where
the trajectory waypoints in robot C-space is shown.
Based on the blend duration, the blend profile is gen-
erated.

4.1.5. Minimum jerk trajectory

Smooth trajectories are normally modelled with cu-
bic polynomials, but they provide constant jerk pro-
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FIG 9. Trajectory with parabolic blend vs linear trajec-
tory

file [26]. klampt uses quintic polynomial function for
achieving minimum jerk trajectory.

Energy consumption analysis of linear axis

Based on the location of the linear axis from the previ-
ous position, the energy consumed by the linear mo-
tor can be computed. Out of the probable locations
from initial inverse kinematics computation, the en-
ergy required by the linear axis motors is computed.
The formulation is given here:

force = mass ∗ acceleration(11)

By computing the force by the known mass and accel-
eration due to gravity, torque is calculated as below:

torque = length_of_radial_arm ∗ force ∗ sin(θ)
(12)

From the known motor characteristics, required power
is computed

power_linear_axis = torque ∗motor_speed/9.5488
(13)

Energy consumption analysis of robot

For each of the computed trajectory profile in sec-
tion 4.1, the energy consumed by the robot is calcu-
lated based on robot dynamics. Dynamic model of the
robot is described using the Lagrangian formulation.
Based on the different influential factors such as joint
orientation, load, Coriolis and centrifugal forces, the
generated torque is computed based on the inverse-
dynamics. From the computed torque, energy con-
sumed by the robot is calculated.

B(q)q̈ + C(q, q̇) +G(q) = τ +
∑
i

Ji(q)
T fi(14)

q is the joint configuration
q̇ is the velocity
q̈ is the acceleration
B(q) is the positive semidefinite mass matrix
C(q,q̇) is the Coriolis force matrix
G(q) is the generalized gravity
τ is the link torque
f i is the external forces

Based on the acceleration for any trajectory profile un-
der consideration, the inverse dynamics for the robot
joints are solved. The output is the torque required by
the robot for a given configuration. The above equa-
tion holds good for robot with no load, and the digital
twin implementation includes the external load char-
acteristics. As proposed in [14] [27], external load is
added to external forces term in equation(14). The
force due to external load can be computed using
Newton’s law of motion: F = m ∗ a. The mass of
the different components of sub-element of overhead
structural truss is shown in table 1.

Component Mass

HE1 0.420kg

VIE1 0.290kg

HCE 1 0.37kg

HIE1 0.65kg

VIE2 0.170kg

HCE2 0.390kg

TAB 1. Mass of components belonging to sub-element

From the computed torque, the power consumed by
the robot at any instant t can be calculated using [28]:

power_robot(t) =
6∑

i=1

τest(i, t)Q̇(i, t)(15)

Q̇ is the angular velocity

4.2. Inferencing the parameters for robot task

Inferencing algorithm

Inferencing an unknown task is envisioned with the
idea to reduce the computational time during the real
time interaction. This can be inferred from the FIG
10. Time for computing path with obstacles takes al-
most 7minutes which may be too long for an user with
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FIG 10. Time required for path and trajectory planning

MR interaction. For the real time interaction using
mixed-reality, it would be more valuable if the results
are delivered in shorter time, thereby accelerating the
decision time. With a motivation to reduce the com-
putation time, approach of regression analysis is tried
out. Results of the regression model implementation
is discussed in section6.
Correlating the data for meaningful inferencing is im-
portant to have a successful prediction on unknown
information. Feature selection plays an important role
in enhancing the performance of regression model. In
this work, Pearson correlation is used for understand-
ing the impact of input features to the dependent out-
put variable. Based on the identified features, regres-
sion model is evaluated further.

4.3. Validating the regression model

There are standard measures to analyse the logistic
regression model. They are:

Confusion matrix

It denotes the performance of a classification model.
It comprises of 4 quadrants specifying 4 different com-
binations of predicted and actual values. The further
validation specified in this section is based on the
numbers that are obtained from confusion matrix and
is shown in matrix-table 2.

Actual values

Positive Negative Total

Predicted values
Positive a b a+ b

Negative c d c+ d

Total a+ c b+ d N

TAB 2. Confusion matrix

Sensitivity (Se)

Sensitivity is the measure to ascertain the percentage
of positive values that are classified as positive [29].

(16) Sensitivity = TP/(TP + FN)

Specificity (Sp)

Specificity complements sensitivity as it measures the
percentage of negative values that are classified as
negative. This is given by:

(17) Specificity = TN/(TN + FP )

Accuracy (A)

Accuracy is computed based on the area under the
ROC (Receiver operating characteristic) curve. This
curve shows the probability of correctly classified
positive values against the probabilities of incorrectly
classified negative values. Area under the ROC
(a.k.a AUC) describes the capability of model to dis-
criminate. Also area under ROC is used to trade-off
between sensitivity and specificity. Mathematically,
accuracy is given by:

(18) Accuracy = (TP+TN)/(TP+TN+FP+FN)

Precision (P)

Precision describes the measure that how good the
model is predicting positive values that are actually
positive. It is given by:

(19) Precision = TP/(TP + FP )

f1_score

f1_score is an alternative measure to describe mod-
els’ accuracy. It is computed using the precision and
sensitivity values. It is given by:

(20) f1_score = (2× P × Se)/(P + Se)

For the linear regression model, the following mea-
sures are used for understanding the performance of
model:

Residual plots

Residual plots describe the difference between ob-
served values and the learned response values.

8TP : True Positive, FN : False Negative
82, TN : True Negative, FP : False Positive
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Residuals are the difference between data values
to the regression line. An regression (a.k.a identity)
line is formed based on the predicted values from
regression data and the scattering pattern around the
identity line, describes if the linear regression model
is valid.

Mean squared error (MSE)

It describes the closeness of regression line to the
data points. Larger MSE means that the data points
are widely dispersed and the smaller MSE describes
the closer dispersion around the regression line.
Smaller MSE values are preferred due to the fact that
the errors are less and so better is the regression
model.

R2

Measures how well the data fits the regression model.
Higher the R2 value is desired but it doesn’t mean that
the regression model is good, and it is based on the
regression data. Higher the R2 values may also indi-
cate over-fitting. In case of over-fitting the regression
model performs well on test data and not on any un-
known new data.

4.4. Real time interaction

With the implementation of DT based on analysis from
4.2, it would be possible to infer the robot behaviour
for any new robot tasks in the MR environment. The
following strategy is proposed for understanding robot
behaviour interactively:

Identifying the objects with point cloud data

The objects in real-world is identified by performing
point cloud analysis from 3D sensor data. The robot
tasks are described based on combining the identified
object and the user input from the MR. For examsple,
point cloud data would identify a "side-wall panel" and
if the user input would be "pick", the robot behaviour
is analysed for "pick sidewall panel".

Perform robot task analysis

Regression analysis is performed on the new ("pick
sidewall panel") robot task. This is a two-step pro-
cedure, where the reachability is first computed and
based on the outcome, kinematic and dynamic data
are computed. Time taken for the task along with en-
ergy required is computed.

FIG 11. Reference point for computation and transfor-
mation

Virtual representation in MR

The computed parameters are displayed for the user
in MR. The continuous interaction by the virtual sys-
tem to the real world objects enables the possibility to
correlate the effects of relative position and orienta-
tion of the object w.r.to the robot.
The whole implementation is planned to be deployed
in an human-robot collaborative environment. The un-
derstanding of impact on relative position and orienta-
tion of object to robot could be useful to perform virtual
commissioning, based on the multi-faceted analysis.
An example of such analysis could be comparing the
impact of robot execution with human execution on a
specific task based on different parameters such as
execution time, load etc. This understanding is then
extended to understand the capabilities of PLC with
other hardware on different communication parame-
ters for an enhanced virtual commissioning.
Since real-time implementation is not part of this pa-
per, any further information on real time interaction is
not provided.

5. IMPLEMENTATION

The pre-assembly cell is modelled on 1:1 scale to the
real time hardware. The placement of the linear axis
on the pre-assembly table is taken into consideration
for analysing the robot reachability for any required
task. This is shown in FIG 11 and due to the reason
that linear axis motion in real-time hardware is pro-
grammed with this point as reference, it is easier to
perform transformation between simulation and real-
world without any additional computation.
The overhead structural truss comprises of identical
sub-elements that are spaced at regular intervals and
are interconnected such that the load bearing capac-
ity for holding the overhead bins is achieved. One
such sub-element is shown in FIG 12. Following as-
sumptions are applicable to this work:
1. Only the regular shapes are considered.
2. The robot handles component near to the it’s cen-
tre of mass.
Each of the individual components of the sub-element
are required to be placed on the jig for successful as-
sembly process execution.
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FIG 12. Representative diagram of a overhead struc-
tural truss element

FIG 13. Initial reachability analysis

5.1. Initial analysis on robot reachability

Initial analysis on probable locations on the pre-
assembly cell is computed for the different robot
tasks that correspond to either pick or place on the
pre-assembly cell. This is illustrated in FIG 13 9,
where the robot reachability for specific task is per-
formed based on inverse kinematics analysis. There
are more positions on the pre-assembly cell that are
reachable for any robot task. This is shown in FIG 14,
where the robot is placed at different locations on the
pre-assembly cell and it can be seen that the robot
task is successful.
The pre-assembly cell under consideration is 6m long.
Performing the reachability analysis of the robot for
whole length of the axis is not an appropriate execu-
tion, considering the "reach" of the robot arms. To
ensure that the reachability analysis is carried appro-

9Image is shown without overhead structural truss assembly jig
for easier understanding

FIG 14. Multiple reachable positions on linear axis

FIG 15. Range on linear axis for analysing reachability

priately, only the section of pre-assembly cell is con-
sidered relative to the target location in y-axis. This
is shown in FIG 15, where the range of robot motion
w.r.to target is defined. As shown in FIG 15, the range
is described as ±1500mm (both directions on the pre-
assembly cell) for UR10e robot, that has reachability
of 1300mm.
Based on the reachability analysis, the locations on
pre-assembly cell for a task is classified to be either
reachable or non-reachable. This paves the further
way to perform path planning which is described in
the following sub-section.

5.2. Path planning and trajectory generation

For all the reachable locations, the path planning
analysis is performed. The output from inverse kine-
matics is taken as input to the path planning module,
and the path is planned for each joint of the robot. To
maximize the benefit of motion planning in collision
avoidance with objects around, robot configuration
space is used.
In general path planning is described by following
pipeline, [30]:
1. Construction of the planning problem: Con-
figuration space (C-space) is described for better
motion planning. In this work, C-space is described
to avoid collisions with the pre-assembly cell and jigs
for overhead structural truss.
2. Instantiating the planning algorithm: Using the
constructed C-Space, it would be possible to plan the
robot’s motion. Different sampling based planning
algorithms are used for planning the collision-free
robot motion. In this work Rapidly-exploring Random
Trees (RRT) algorithm is used to perform motion
planning. The necessary values such as planner
type, perturbation radius are set while instantiating
the planner.
3. Planner execution: RRT algorithm works on ran-
dom sampling in robot C-space [31]. The following
steps are generalization of steps performed by RRT
algorithm:

Until target_not_reached:

1. set start_point , goal_point

2. Generation of random point aka nodes.

2. If the random point collides with

obstacles , change the random point.

3. If random point == goal_point:

target_not_reached = False

Listing 3. Sequence of steps by RRT algorithm

The required start and goal positions are set followed
by executing the planner in loop. The explored nodes
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are stored as edges by klampt library. One such
explored edges are shown in FIG 16, where the
list of joint configuration for first joint (a.k.a "shoul-
der_pan_joint") is shown. The successful nodes
that contribute to the final trajectory are stored as
milestones. Since the algorithm works on random ex-
ploration in C-space, the loop execution is performed
for certain number of iterations. More the number
of iterations, more probability on successful path
exploration, but also more computational time. In this
work it is set to be 1000.

{

"_id": {

"$oid": "64 bf7efd828ce5f0c0ef20e9"

}

"comp_name": "place_target_HFork_1",

"target_position_x": 0.25,

"target_position_y": 0.5,

"target_position_z": 1.5,

"traj_name": "trapezoidal",

"isReachable": true ,

"robot_placement_location": 0.2,

"req_angle_J1": 3.939444239980029 ,

"req_angle_J2": 4.9135396629823616 ,

"req_angle_J3": -1.7748518007712728 ,

"req_angle_J4": -4.709410731983566 ,

"req_angle_J5": -1.5708527175068414 ,

"req_angle_J6": -5.4853671517291245 ,

"power_consumed": 0.00007448406056987926 ,

"time_consumed": 123.48270030090431 ,

"date": {

"$date": "2023 -07 -25 T07 :51:25.986Z"

}

}

Listing 4. Data format stored in MongoDB

On the successful outcome of path planning, it is then
possible to generate robot trajectories. The differ-
ent velocity trajectories mentioned in 4.1 are gener-
ated, and the corresponding milestones and execu-
tion time-points are deduced for further analysis. A
generated joint position and velocity trajectory profile
for trapezoidal motion is shown in FIG 17 with time-
points in x-axis and joint milestones in y-axis. More
information about trajectory profile and their compari-
son on sustainable process execution is discussed in
section6.
The whole flow from performing inverse kinematics
calculations until energy and time computations are
shown in FIG 18. The shown process flow depicts
the implementation sequences for generating robot
parameters concerning energy and time for different
objects at different locations.

5.3. Regression model for computing required
parameters

The procedure described in 5.1 and 5.2 are performed
for different target locations, and the results are stored
in MongoDB. The single block of stored information is
shown in listing 4.
Based on the stored data, two different regression
models are trained. First a logistic regression model
is trained based on the target positions to the reach-
ability. This is followed by training a linear regres-
sion model that operates on computing the required

joint angles, energy and time consumed based on in-
put trajectory (such as trapezoidal, triangular etc.) .
Based on the regression model, it is then possible to
infer the information on reachability and joint parame-
ters for any new target.

5.3.1. Validating regression model

Features identification

Based on Pearson correlation, the features influences
are studied. It is seen that the Robot placement loca-
tion has larger influence on the reachability analysis,
followed by target y location. This is shown in FIG 19.
The similar analysis is made for linear regression
model to compute joint angles for a robot task. The
impact of input features on the joint 1 (aka shoulder
pan joint) angle is shown in FIG 20. It can be seen
that the target location in x-direction has greater
influence on computing joint 1 angle and this anal-
ysis is made for all the other joints. It is seen that
different features have different degree of influence
on computing angles for different joints.
The regression model is built based on the identified
features that have direct impact on the time and en-
ergy. A simple multivariate multiple linear regression
model is described based on the identified features,
that computes the time and energy consumption by
the robot for any new task.

Validating logistic and linear regression

The different validating measures (like sensitivity,
specificity) are computed based on the acquired
data. More details on the data analysis for logistic
regression validation is provided in next section 6.

6. RESULTS AND DISCUSSION

6.1. Analysing robot trajectories for sustainable
execution

In the scope of optimal execution, it is necessary to
compute the energy and time consumed by the whole
system. As already established, both the linear axis
and the robot contribute to the total energy and time.
Time and energy consumed by the linear axis is di-
rectly computed from the formulas mentioned in 4.2
and it is influenced based on the target location. En-
ergy consumed by the robot depends not only on the
target location, but also on the chosen trajectory.
The influence of trajectories on time consumption can
be interpreted in FIG 22, where the joint position and
their velocities are plotted against time for different
trajectory types. It can be seen that the minimum-
jerk trajectory takes more time than the other trajec-
tories while trapezoidal trajectory consume less time
than others. The effect of time consumption vs en-
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FIG 16. Computational edges and corresponding angles for first joint of UR10e

FIG 17. Joint position and velocity trajectories for
trapezoidal profile

ergy could be clearly seen in FIG 21, where it can
be understood that the minimum-jerk trajectory takes
more time and consumes less energy and the trape-
zoidal trajectory is faster than other trajectories at dif-
ferent locations. The influence of robot’s location on
pre-assembly to time and energy consumption can
be understood by interpreting the graph. Although
trapezoidal trajectory is faster than other trajectories
at robot base location 0.4m, it is not the same when
the robot is placed at 0.3m and 0.5m. The consumed
energy and required time for different trajectories is
greatly influenced by base location of robot as it can
be seen in FIG 21. It is evident from the values that
was observed for different target at different locations.
In general it is seen that Minimum jerk, triangular and
trapezoidal trajectories consume less energy and take

more time to perform. Since, FIG 21 describes the
energy consumption only for the time period of tra-
jectory, the observed values on energy consumption
are too less. This information can be easily extrap-
olated depending on the hours of robot operations.
For instance, if the robots are operated in shop-floor
for 20hours/day, it would be around 1000kWh. The
cross-correlation of time and energy consumption by
different trajectories to the base-location of robot lays
the foundation for inferencing algorithm.

6.2. Correlating the regression model

The simulation was performed for different targets at
different locations on the pre-assembly cell. A total of
243004 data were generated based on the structure
described in listing4. Initially, logistic regression
model is tested for reliable assertion. Part of the
stored data are used for training and remaining for
testing the model. scikit library is used for describ-
ing and testing the regression model. One way to
understand the performance of logistic regression
model is by plotting the confusion matrix as shown
in FIG 23. Based on the correlation from different
quadrants of confusion matrix, the effectiveness of
regression model is identified. The simple logistic
regression model didn’t deliver good results for clas-
sifying reachability of robots on pre-assembly cell.
Using the train_test_split in scikit library, 20% of the
data were used for testing the model (48601 data out
of 243004). The specificity of model with test dataset
is really good at 0.9962 but the sensitivity of model
isn’t not good with a value of 0.1505. The different
computational values are given here (based on FIG
23):
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FIG 18. Process flow in reachability analysis and computation of KPI’s
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FIG 19. Feature selection analysis for predicting
robot’s reachability (Logistic Regression)

FIG 20. Feature selection analysis for predicting joint 1
angle (Linear Regression)

FIG 21. Time required and energy consumed by the dif-
ferent joint trajectories at different locations

Sensitivity : TP/(TP+FN)
151/(151 + 852) = 0.1505
Specificity : TN/(TN + FP)
47419/(47419 + 179) = 0.9962
Accuracy : (TP+TN)/(TP+TN+FP+FN)
(47419 + 151)/ (47419+151+179+852) = 0.9787
Precision : TP/(TP+FP)
151 / (151 + 179) = 0.4575
Due to underperforming simple logistic regression
model, polynomial regression model is tried to im-
prove the model classification behaviour. It improved
to some extent as seen in FIG 24. Results are shown
for third degree polynomial since it showed better
classification behaviour compared to other degree
polynomials. The different computational values are
shown here (based on FIG 24):
Sensitivity : TP/(TP+FN)
463/(463 + 540) = 0.46
Specificity : TN/(TN + FP)
47339/(47339 + 254) = 0.9945
Accuracy : (TP+TN)/(TP+TN+FP+FN)
(47339 + 463)/ (47339 + 463 + 259 + 540) = 0.9835
Precision : TP/(TP+FP)
463 / (463 + 259) = 0.6412
Although the values are improved compared to sim-
ple logistic regression model, the model’s sensitivity
is still not sufficient for classification on unknown/new
dataset.

7. CONCLUSION AND NEXT-STEPS

7.1. Conclusion

The presented work in this paper is part of the
whole research on implementing the methodology
to implement shop-floor digital twin model for virtual
commissioning. The proposed implementation of
digital twin begins with simulation model generation
for robot shop-floor, and to optimize the simulation
parameters based on the feedback information from
hardware. With this accurately described simulation
model, it would be then possible to perform virtual
commissioning that would assist the users to under-
stand the behaviour of robot performances for any
task, which could be visualized through AR10 model.
With the assistance from AR, it would be possible to
position the robot relatively to the task or vice-versa
based on different KPIs11 in real time environment.
This paper illustrates the methodology to model
the robot behaviour for minimal time and energy
consumption. The input for simulation is provided by
process planning module, which delivers the target
location for robot tasks. Using this input, a two-fold
approach is proposed, where the probable locations
of robot on pre-assembly cell are computed followed
by trajectory computation. Performing dynamic anal-
ysis on the robot would provide the energy consumed
by the robot for trajectory under consideration. Based

10Augmented Reality
11Key Performance Indicators
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FIG 22. Joint position and velocity plot for different trajectories over time (robot at 0.1m on the pre-assembly cell)

FIG 23. Confusion matrix for simple logistic regression

FIG 24. Confusion matrix for 3rd degree polynomial re-
gression

on the total energy consumed by the robot for a
given task, the robot location on pre-assembly cell
corresponding to minimum energy is chosen. The
robots are then simulated for visual inspection. Data
is generated from simulation and is stored for further
analysis. The idea to implement regression model
arose from the time requirement for path planning
algorithms, which may not be ideal for an mixed
reality interaction. But the implementation of suitable
regression algorithm has to be reinvestigated, since it
didn’t deliver expected results.On identifying the right
regression model, the output of regression analysis
could be integrated to process sequencing module
or to layout planning, which could make informed
decision based on robot capabilities.

7.2. Next steps

The implementation of inverse kinematics and path
planning for different trajectories work fine. Analy-
sis of different regression models would be carried
in order to understand if it is an effective solution for
the provided conditions. Different logistic regression
models implementation (such as neural networks) will
be investigated and the impact of such analysis will be
performed before deployment. The trapezoidal pro-
file has a ramp duration and the next step would be
parametrizing the ramp duration to external load, such
that any jerk due to the load in conjunction to motion
is suppressed. For the parabolic trajectory it would be
interesting to infer the relation between blend duration
to the external load (which is in preliminary stage).
Once the feedback data is available, the simulation
has to be validated based on the real-time data, with
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which simulation parameters would be tuned. Us-
age of ROS12 has been explored for digital shadow
in cabin assembly process [32] and the idea on im-
plementation has to be revisited, since the implemen-
tation time on acquiring ROS data would be consid-
erably slower than using same interface as the feed-
forward loop. Since data frequency is not playing cen-
tral role in this work unlike remote monitoring, trade-
off in interfaces for easier implementation would be
adopted.

Contact:

venkatachalam.srinivasan@dlr.de
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